Answer:
Take the square root of the constant (number w/o the variable) and then multiply that by 2.
Step-by-step explanation:
A perfect square trinomial is something like this:
If I have 6x, and I want to find the last term I would take half a six and then square it to get 9.
SO.... To get the middle term of a perfect square trinomial, you would need to do the reverse.. So...
1) Take the square root of the constant...
2) Multiply that by 2
Answer:
The inner function is
and the outer function is
.
The derivative of the function is
.
Step-by-step explanation:
A composite function can be written as
, where
and
are basic functions.
For the function
.
The inner function is the part we evaluate first. Frequently, we can identify the correct expression because it will appear within a grouping symbol one or more times in our composed function.
Here, we have
inside parentheses. So
is the inner function and the outer function is
.
The chain rule says:
![\frac{d}{dx}[f(g(x))]=f'(g(x))g'(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%3Df%27%28g%28x%29%29g%27%28x%29)
It tells us how to differentiate composite functions.
The function
is the composition,
, of
outside function: 
inside function: 
The derivative of this is computed as

The derivative of the function is
.
Answer:
11
Step-by-step explanation:
because they empty 6 bags and there are 5 bags left to that is 11 all together
Your question can be quite confusing, but I think the gist of the question when paraphrased is: P<span>rove that the perpendiculars drawn from any point within the angle are equal if it lies on the angle bisector?
Please refer to the picture attached as a guide you through the steps of the proofs. First. construct any angle like </span>∠ABC. Next, construct an angle bisector. This is the line segment that starts from the vertex of an angle, and extends outwards such that it divides the angle into two equal parts. That would be line segment AD. Now, construct perpendicular line from the end of the angle bisector to the two other arms of the angle. This lines should form a right angle as denoted by the squares which means 90° angles. As you can see, you formed two triangles: ΔABD and ΔADC. They have congruent angles α and β as formed by the angle bisector. Then, the two right angles are also congruent. The common side AD is also congruent with respect to each of the triangles. Therefore, by Angle-Angle-Side or AAS postulate, the two triangles are congruent. That means that perpendiculars drawn from any point within the angle are equal when it lies on the angle bisector
Answer:
C
Step-by-step explanation:
I typed it into a graphing calculator. You could also choose a point (I choose (4,0) ) then plug it into each equation In the answers until you get back the numbers of the point you choose to represent x and y. For example