1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katena32 [7]
3 years ago
6

To win the game, Elena has to roll an even number first and a number less than 3 second. Her probability of winning is 6/36.

Mathematics
2 answers:
Nitella [24]3 years ago
8 0

<u>Answer:</u>

  • Prob (Marta winning) < Prob (Elena winning) : Case 1st, 3rd & 5th
  • Prob (Marta winning) = Prob (Elena winning) : Case 2nd
  • Prob (Marta winning) > Prob (Elena winning) : Case 4th

<u>Step-by-step explanation:</u>

Elena outcomes of winning, first even no. & second no. = 3 : (2,1) , (2,2) , (4,1) , (4,2) , (6,1) , (6,2). So, Probability (Elena willing) = favourable outcomes / total outcomes = 6 / 36

  • Margie dice sum '7' outcomes = (2,5) , (5,2) , (3,4) , (4,3). So, Prob = 4/36
  • Margie dice sum '6' outcomes = (1,5) , (5,1) , (2,4) , (4,2) , (3,3). So, Prob = 6/36
  • Margie dice sum '2' or '9' outcomes = (1,1) , (3,6) , (6,3) , (4,5) , (5,4). Prob = 5/36
  • Margie dice sum '>9' outcomes = (3,6) , (6,3) , (4,5) , (5,4) , (4,6) , (6,4) , (5,5) , (5,6) , (6,5) , (6,6). Prob = 10/36
  • Margie dice sum '>2,<5' outcomes = (1,2) , (2,1) , (2,2) , (1,3) , (3,1)  = 4/ 36
Ray Of Light [21]3 years ago
5 0

Answer:

B. rolling a sum of 6

C. rolling a sum of 2 or a sum of 9

E. rolling a sum that is greater than 2 but less than 5

Step-by-step explanation:

You might be interested in
Find all solutions to the following quadratic equations, and write each equation in factored form.
dexar [7]

Answer:

(a) The solutions are: x=5i,\:x=-5i

(b) The solutions are: x=3i,\:x=-3i

(c) The solutions are: x=i-2,\:x=-i-2

(d) The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) The solutions are: x=1

(g) The solutions are: x=0,\:x=1,\:x=-2

(h) The solutions are: x=2,\:x=2i,\:x=-2i

Step-by-step explanation:

To find the solutions of these quadratic equations you must:

(a) For x^2+25=0

\mathrm{Subtract\:}25\mathrm{\:from\:both\:sides}\\x^2+25-25=0-25

\mathrm{Simplify}\\x^2=-25

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x=\sqrt{-25},\:x=-\sqrt{-25}

\mathrm{Simplify}\:\sqrt{-25}\\\\\mathrm{Apply\:radical\:rule}:\quad \sqrt{-a}=\sqrt{-1}\sqrt{a}\\\\\sqrt{-25}=\sqrt{-1}\sqrt{25}\\\\\mathrm{Apply\:imaginary\:number\:rule}:\quad \sqrt{-1}=i\\\\\sqrt{-25}=\sqrt{25}i\\\\\sqrt{-25}=5i

-\sqrt{-25}=-5i

The solutions are: x=5i,\:x=-5i

(b) For -x^2-16=-7

-x^2-16+16=-7+16\\-x^2=9\\\frac{-x^2}{-1}=\frac{9}{-1}\\x^2=-9\\\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\x=\sqrt{-9},\:x=-\sqrt{-9}

The solutions are: x=3i,\:x=-3i

(c) For \left(x+2\right)^2+1=0

\left(x+2\right)^2+1-1=0-1\\\left(x+2\right)^2=-1\\\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x+2=\sqrt{-1}\\x+2=i\\x=i-2\\\\x+2=-\sqrt{-1}\\x+2=-i\\x=-i-2

The solutions are: x=i-2,\:x=-i-2

(d) For \left(x+2\right)^2=x

\mathrm{Expand\:}\left(x+2\right)^2= x^2+4x+4

x^2+4x+4=x\\x^2+4x+4-x=x-x\\x^2+3x+4=0

For a quadratic equation of the form ax^2+bx+c=0 the solutions are:

x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=1,\:b=3,\:c=4:\quad x_{1,\:2}=\frac{-3\pm \sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}

x_1=\frac{-3+\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}+i\frac{\sqrt{7}}{2}\\\\x_2=\frac{-3-\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}-i\frac{\sqrt{7}}{2}

The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) For \left(x^2+1\right)^2+2\left(x^2+1\right)-8=0

\left(x^2+1\right)^2= x^4+2x^2+1\\\\2\left(x^2+1\right)= 2x^2+2\\\\x^4+2x^2+1+2x^2+2-8\\x^4+4x^2-5

\mathrm{Rewrite\:the\:equation\:with\:}u=x^2\mathrm{\:and\:}u^2=x^4\\u^2+4u-5=0\\\\\mathrm{Solve\:with\:the\:quadratic\:equation}\:u^2+4u-5=0

u_1=\frac{-4+\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad 1\\\\u_2=\frac{-4-\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad -5

\mathrm{Substitute\:back}\:u=x^2,\:\mathrm{solve\:for}\:x\\\\\mathrm{Solve\:}\:x^2=1=\quad x=1,\:x=-1\\\\\mathrm{Solve\:}\:x^2=-5=\quad x=\sqrt{5}i,\:x=-\sqrt{5}i

The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) For \left(2x-1\right)^2=\left(x+1\right)^2-3

\left(2x-1\right)^2=\quad 4x^2-4x+1\\\left(x+1\right)^2-3=\quad x^2+2x-2\\\\4x^2-4x+1=x^2+2x-2\\4x^2-4x+1+2=x^2+2x-2+2\\4x^2-4x+3=x^2+2x\\4x^2-4x+3-2x=x^2+2x-2x\\4x^2-6x+3=x^2\\4x^2-6x+3-x^2=x^2-x^2\\3x^2-6x+3=0

\mathrm{For\:}\quad a=3,\:b=-6,\:c=3:\quad x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{\left(-6\right)^2-4\cdot \:3\cdot \:3}}{2\cdot \:3}\\\\x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{0}}{2\cdot \:3}\\x=\frac{-\left(-6\right)}{2\cdot \:3}\\x=1

The solutions are: x=1

(g) For x^3+x^2-2x=0

x^3+x^2-2x=x\left(x^2+x-2\right)\\\\x^2+x-2:\quad \left(x-1\right)\left(x+2\right)\\\\x^3+x^2-2x=x\left(x-1\right)\left(x+2\right)=0

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x=0\\x-1=0:\quad x=1\\x+2=0:\quad x=-2

The solutions are: x=0,\:x=1,\:x=-2

(h) For x^3-2x^2+4x-8=0

x^3-2x^2+4x-8=\left(x^3-2x^2\right)+\left(4x-8\right)\\x^3-2x^2+4x-8=x^2\left(x-2\right)+4\left(x-2\right)\\x^3-2x^2+4x-8=\left(x-2\right)\left(x^2+4\right)

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x-2=0:\quad x=2\\x^2+4=0:\quad x=2i,\:x=-2i

The solutions are: x=2,\:x=2i,\:x=-2i

3 0
3 years ago
-2(4x-6)=6-6x help me
bogdanovich [222]

Answer:

x=3

Step-by-step explanation:

  1. you have to move the terms collect like terms and divide both sides and down load photo math that helps alot with giving answers
6 0
3 years ago
Okay here's the first few questions​
Marina86 [1]

Answer:

1,yes

2,no

3,x=√117

4,x=12 y=6

5,x=12, y=15.75

6 0
3 years ago
BLOW ME UPpppppppppppppppppppppp BRIANLY FREE *winks
nikitadnepr [17]

Answer:

okay

Step-by-step explanation:

3 0
4 years ago
Read 2 more answers
Find the slope of this line
Yanka [14]

Answer:

Undefined (DNE)

Step-by-step explanation:

Any vertical line has an undefined slope.

8 0
2 years ago
Other questions:
  • Jeanette can walk 1 km in 11 minutes. At the same rate, how far can she walk in 55 minutes?
    5·2 answers
  • What is 1.35 as a simplified fraction?
    5·1 answer
  • C. is this the transfer function of a causal system? justify your answer. 3. a circuit is shown below.
    9·1 answer
  • Having trouble with this and 3 others
    11·1 answer
  • Select three ratios that are equivalent to <br> 4:3 <br> Choose 3 answers:
    5·2 answers
  • <img src="https://tex.z-dn.net/?f=x%2B0.08%2B3.21%5Cleq%2060" id="TexFormula1" title="x+0.08+3.21\leq 60" alt="x+0.08+3.21\leq 6
    10·1 answer
  • The table below shows the ticket rates for whale watching trips offered by Ocean Tours. AgeTicket Price. Under three yearsfree.
    8·1 answer
  • Solve the inequality. –1/4x – 8 &lt; 3/4
    8·2 answers
  • What is the factored form of 3x+24y?
    5·2 answers
  • What's 2 - 4 + 3 ×2<br> Pls solve this quick
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!