We assume

(acceleration is constant. We apply the equation

where s is the distance to stop

. We find the acceleration from this equation

We know the acceleration, thus we find the distance necesssary to stop when initial speed is

Answer: (c) 2000 N
Explanation:
Given Data :
▪ Initial velocity = zero ( body is at rest)
▪ Distance travelled = 100m
▪ Final kinetic energy = 200000J
To Find :
▪ Resultant force acting on the car.
Therefore:
W = F × d = ΔK ----------------- eq 1.
where,
W = work done
F = applied force
d = distance
ΔK = change in kinetic energy
Calculation :
→ F × d = Kf - Ki ----------------- eq 2.
Where:
Kf = Final kinetic energy = 200000
Ki = initial kinetic energy = 0
Substituting our values into the formula from equation (2)
→ F × 100 = 200000 - 0
→ F = 200000/100
→ F = 2000N
C provides support for the body
Explanation:
The frequency of a wave is inversely proportional to its wavelength. That means that waves with a high frequency have a short wavelength, while waves with the low frequency have a longer wavelength.
<h3>Answer: Since the volume of the solution increases, the molarity decreases. Thus, for an acidic solution, the pH will increase, whereas for a basic solution, the pH will decrease.</h3><h2></h2>