1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LUCKY_DIMON [66]
3 years ago
9

How do you calculate the net force, i need a full explanation PLEASE

Physics
1 answer:
Lina20 [59]3 years ago
7 0

Answer:

Once you have drawn the free-body diagram, you can use vector addition to find the net force acting on the object. We will consider three cases as we explore this idea:

Case 1: All forces lie on the same line.

If all of the forces lie on the same line (pointing left and right only, or up and down only, for example), determining the net force is as straightforward as adding the magnitudes of the forces in the positive direction, and subtracting off the magnitudes of the forces in the negative direction. (If two forces are equal and opposite, as is the case with the book resting on the table, the net force = 0)

Example: Consider a 1-kg ball falling due to gravity, experiencing an air resistance force of 5 N. There is a downward force on it due to gravity of 1 kg × 9.8 m/s2 = 9.8 N, and an upward force of 5 N. If we use the convention that up is positive, then the net force is 5 N - 9.8 N = -4.8 N, indicating a net force of 4.8 N in the downward direction.

Case 2: All forces lie on perpendicular axes and add to 0 along one axis.

In this case, due to forces adding to 0 in one direction, we only need to focus on the perpendicular direction when determining the net force. (Though knowledge that the forces in the first direction add to 0 can sometimes give us information about the forces in the perpendicular direction, such as when determining frictional forces in terms of the normal force magnitude.)

Example: A 0.25-kg toy car is pushed across the floor with a 3-N force acting to the right. A 2-N force of friction acts to oppose this motion. Note that gravity also acts downward on this car with a force of 0.25 kg × 9.8 m/s2= 2.45 N, and a normal force acts upward, also with 2.45 N. (How do we know this? Because there is no change in motion in the vertical direction as the car is pushed across the floor, hence the net force in the vertical direction must be 0.) This makes everything simplify to the one-dimensional case because the only forces that don’t cancel out are all along one direction. The net force on the car is then 3 N - 2 N = 1 N to the right.

Case 3: All forces are not confined to a line and do not lie on perpendicular axes.

If we know what direction the acceleration will be in, we will choose a coordinate system where that direction lies on the positive x-axis or the positive y-axis. From there, we break each force vector into x- and y-components. Since motion in one direction is constant, the sum of the forces in that direction must be 0. The forces in the other direction are then the only contributors to the net force and this case has reduced to Case 2.

If we do not know what direction the acceleration will be in, we can choose any Cartesian coordinate system, though it is usually most convenient to choose one in which one or more of the forces lie on an axis. Break each force vector into x- and y-components. Determine the net force in the x direction and the net force in the y direction separately. The result gives the x- and y-coordinates of the net force.

Example: A 0.25-kg car rolls without friction down a 30-degree incline due to gravity.

We will use a coordinate system aligned with the ramp as shown. The free-body diagram consists of gravity acting straight down and the normal force acting perpendicular to the surface.

We must break the gravitational force in to x- and y-components, which gives:

F_{gx} = F_g\sin(\theta)\\ F_{gy} = F_g\cos(\theta)F

gx

​

=F

g

​

sin(θ)

F

gy

​

=F

g

​

cos(θ)

Since motion in the y direction is constant, we know that the net force in the y direction must be 0:

F_N - F_{gy} = 0F

N

​

−F

gy

​

=0

(Note: This equation allows us to determine the magnitude of the normal force.)

In the x direction, the only force is Fgx, hence:

F_{net} = F_{gx} = F_g\sin(\theta) = mg\sin(\theta) = 0.25\times9.8\times\sin(30) = 1.23 \text{ N}F

net

​

=F

gx

​

=F

g

​

sin(θ)=mgsin(θ)=0.25×9.8×sin(30)=1.23 N

You might be interested in
How is work involved in stopping a car?
vichka [17]
You have to move your foot to stop the car so I guess that would be considered work by moving your foot
5 0
3 years ago
Read 2 more answers
Careful measurements have been made of Olympic sprinters in the 100-meter dash. A quite realistic model is that the sprinter's v
mihalych1998 [28]

Answer:

a.

\displaystyle a(0 )=8.133\ m/s^2

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=0.52\ m/s^2

b.\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. t=9.9 \ sec

Explanation:

Modeling With Functions

Careful measurements have produced a model of one sprinter's velocity at a given t, and it's is given by

\displaystyle V(t)=a(1-e^{bt})

For Carl Lewis's run at the 1987 World Championships, the values of a and b are

\displaystyle a=11.81\ ,\ b=-0.6887

Please note we changed the value of b to negative to make the model have sense. Thus, the equation for the velocity is

\displaystyle V(t)=11.81(1-e^{-0.6887t})

a. What was Lewis's acceleration at t = 0 s, 2.00 s, and 4.00 s?

To compute the accelerations, we must find the function for a as the derivative of v

\displaystyle a(t)=\frac{dv}{dt}=11.81(0.6887\ e^{0.6887t})

\displaystyle a(t)=8.133547\ e^{-0.6887t}

For t=0

\displaystyle a(0)=8.133547\ e^o

\displaystyle a(0 )=8.133\ m/s^2

For t=2

\displaystyle a(2)=8.133547\ e^{-0.6887\times 2}

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=8.133547\ e^{-0.6887\times 4}

\displaystyle a(4)=0.52\ m/s^2

b. Find an expression for the distance traveled at time t.

The distance is the integral of the velocity, thus

\displaystyle X(t)=\int v(t)dt \int 11.81(1-e^{-0.6887t})dt=11.81(t+\frac{e^{-0.6887t}}{0.6887})+C

\displaystyle X(t)=11.81(t+1.45201\ e^{-0.6887t})+C

To find the value of C, we set X(0)=0, the sprinter starts from the origin of coordinates

\displaystyle x(0)=0=>11.81\times1.45201+C=0

Solving for C

\displaystyle c=-17.1482\approx -17.15

Now we complete the equation for the distance

\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. Find the time Lewis needed to sprint 100.0 m.

The equation for the distance cannot be solved by algebraic procedures, but we can use approximations until we find a close value.

We are required to find the time at which the distance is 100 m, thus

\displaystyle X(t)=100=>11.81(t+1.45\ e^{-0.6887t})-17.15=100

Rearranging

\displaystyle t+1.45\ e^{-0.6887t}=9.92

We define an auxiliary function f(t) to help us find the value of t.

\displaystyle f(t)=t+1.45\ e^{-0.687t}-9.92

Let's try for t=9 sec

\displaystyle f(9)=9+1.45\ e^{-0.687\times 9}-9.92=-0.92

Now with t=9.9 sec

\displaystyle f(9.9)=9.9+1.45\ e^{-0.687\times 9.9}-9.92=-0.0184

That was a real close guess. One more to be sure for t=10 sec

\displaystyle f(10)=10+1.45\ e^{-0.687\times 10}-9.92=0.081

The change of sign tells us we are close enough to the solution. We choose the time that produces a smaller magnitude for f(t).  

At t\approx 9.9\ sec, \text{ Lewis sprinted 100 m}

7 0
3 years ago
What two energies does a bulldozer use​
sesenic [268]
Mechanical and electrical
3 0
3 years ago
Jupiter has a mass of 1,898,000,000,000,000,000,000,000,000 kg. How would
Natasha2012 [34]

Answer:

B.1.898^27 kg

Explanation:

4 0
3 years ago
How do I solve Q.14 & Q.15
timurjin [86]
14-needle heading west
15-the strength of the current and the distance
6 0
3 years ago
Other questions:
  • you and a friend sit still on a spinning merry-go-round. The merry-go-round spins 5 times every second, and to a stationary obse
    12·2 answers
  • Spaceship 1 and Spaceship 2 have equal masses of 200 kg. They collide.
    11·2 answers
  • Listed in the Item Bank are some important labels for sections of the image below. To find out more information about labels, so
    14·1 answer
  • A fisherman notices that his boat is moving up and down periodically, owing to waves on the surface of the water. It takes 2.5 s
    11·1 answer
  • To what volume will a sample of gas expand if it is heated from 50.0°c and 2.33 l to 500.0°c?
    12·1 answer
  • A 10kg crate sits on a distant planet. The planet has the same mass as Earth, but 80% of the radius of Earth (Earth radius = 637
    6·1 answer
  • Write about
    9·1 answer
  • Write any two important of gravitational force?
    14·1 answer
  • A wind turbine takes in energy from wind with the goal of converting it into electrical energy. Much of the wind energy is also
    7·1 answer
  • Alistar places a 6.4 kg block on an incline plane that is 23 degrees above the horizontal. The block starts from rest, and in 2.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!