Answer:


________________



Step-by-step explanation:
<u>What</u><u> </u><u>you</u><u> </u><u>need</u><u> </u><u>to know</u>
- 
- 
- 
45° = [4x - 3]°
+ 3° + 3°
____________
![\frac{48°}{4°} = \frac{[4x]°}{4°} \\ \\ 12° = x](https://tex.z-dn.net/?f=%5Cfrac%7B48%C2%B0%7D%7B4%C2%B0%7D%20%3D%20%5Cfrac%7B%5B4x%5D%C2%B0%7D%7B4%C2%B0%7D%20%5C%5C%20%5C%5C%2012%C2%B0%20%3D%20x)
Then use the Triangular Interior Angles Theorem to find the
then set that equal to the
:
180° = 41° + 45° + 
180° = 86° + 
- 86° - 86°
______________
94° = 
94° = [11y + 6]°
- 6° - 6°
__________
![\frac{88°}{11°} = {[11y]°}{11°} \\ \\ 8° = y](https://tex.z-dn.net/?f=%5Cfrac%7B88%C2%B0%7D%7B11%C2%B0%7D%20%3D%20%7B%5B11y%5D%C2%B0%7D%7B11%C2%B0%7D%20%5C%5C%20%5C%5C%208%C2%B0%20%3D%20y)
_______________________________________________
<u>What</u><u> </u><u>you</u><u> </u><u>need</u><u> </u><u>to know</u>
- 
- 
- 
90° = [13y - 1]°
+ 1° + 1°
______________
![\frac{91°}{13°} = \frac{[13y]°}{13°} \\ \\ 7° = y \\ \\ 90° = m∠R](https://tex.z-dn.net/?f=%5Cfrac%7B91%C2%B0%7D%7B13%C2%B0%7D%20%3D%20%5Cfrac%7B%5B13y%5D%C2%B0%7D%7B13%C2%B0%7D%20%5C%5C%20%5C%5C%207%C2%B0%20%3D%20y%20%5C%5C%20%5C%5C%2090%C2%B0%20%3D%20m%E2%88%A0R)
Then use the Triangular Interior Angles Theorem to find the
then set that equal to the
:
180° = 28° + 90° + 
180° = 118° + 
- 118° - 118°
______________
62° = 
62° = [6z - 4]°
+ 4° + 4°
____________
![\frac{66°}{6°} = \frac{[6z]°}{6°} \\ \\ 11° = z](https://tex.z-dn.net/?f=%5Cfrac%7B66%C2%B0%7D%7B6%C2%B0%7D%20%3D%20%5Cfrac%7B%5B6z%5D%C2%B0%7D%7B6%C2%B0%7D%20%5C%5C%20%5C%5C%2011%C2%B0%20%3D%20z)
I am joyous to assist you anytime.