The moving of molecules from areas of high concentration to that of low concentration to gain energy is best described as passive transport
<h3>What is passive transport?</h3>
Passive transport is a type of membrane transport in which chemicals are moved across cell membranes without using energy. Unlike active transport, which uses cellular energy, passive transport uses the second law of thermodynamics to cause the movement of substances across cell membranes.
<h3>Why is passive transport important?</h3>
Passive transport processes are critical to homeostasis. They maintain proper conditions inside the cell and the organism as a whole by letting chemicals to pass into and out of the cell.
To know more about Passive transport visit:
brainly.com/question/13542102
#SPJ4
Answer:
the kinetic energy of the reactant molecules(C)
Explanation: i hope this is the correct answer if this is wrong or incorrect please let me know
Answer:
U= 238g/mol
U2O5= 556g/mol
Explanation:
Since U= 238
O=16
U3O5= 2(238)+3(16)=556g/mol
Answer: Butane will effuse more quickly because it has a smaller molar mass
Explanation:
Molar mass of C4H10 = 58.123 g/mole
Molar mass of I2 = 253.808 g/mole
Answer:
a) Aqueous LiBr = Hydrogen Gas
b) Aqueous AgBr = solid Ag
c) Molten LiBr = solid Li
c) Molten AgBr = Solid Ag
Explanation:
a) Aqueous LiBr
This sample produces Hydrogen gas, because the H+ (conteined in the water) has a reduction potential higher than the Li+ from the salt. Therefore the hydrogen cation will reduce instead of the lithium one and form the gas.
b) Aqueous AgBr
This sample produces Solid Ag, because the Ag+ has a reduction potential higher than the H+ from the water. Therefore the silver cation will reduce instead of the hydrogen one and form the solid.
c) Molten LiBr
In a molten binary salt like LiBr there is only one cation present in the cathod. In this case the Li+, so it will reduce and form solid Li.
c) Molten AgBr
The same as the item above: there is only one cation present in the cathod. In this case the Ag+, so it will reduce and form solid Ag.