Answer:
The percentage abundance of Eu isotopes are 52 % and 48 %
.
Explanation:
The formula for the calculation of the average atomic mass is:
Given that:
Since the element has only 2 isotopes, so the let the percentage of first be x and the second is 100 -x.
For first isotope,:
% = x %
Mass = 151.0 amu
For second isotope :
% = 100 - x
Mass = 153.0 amu
Given, Average Mass = 151.96 amu
Thus,
Solving for x, we get that:
x = 52 %
<u>Thus percentage abundance of Eu isotopes are 52 % and 48 %
.</u>
*Answer:
Option A: 59.6
Explanation:
Step 1: Data given
Mass of aluminium = 4.00 kg
The applied emf = 5.00 V
watts = volts * amperes
Step 2: Calculate amperes
equivalent mass of aluminum = 27 / 3 = 9
mass of deposit = (equivalent mass x amperes x seconds) / 96500
4000 grams = (9* amperes * seconds) / 96500
amperes * seconds = 42888888.9
1 hour = 3600 seconds
amperes * hours = 42888888.9 / 3600 = 11913.6
amperes = 11913.6 / hours
Step 3: Calculate kilowatts
watts = 5 * 11913.6 / hours
watts = 59568 (per hour)
kilowatts = 59.6 (per hour)
The number of kilowatt-hours of electricity required to produce 4.00kg of aluminum from electrolysis of compounds from bauxite is 59.6 kWh when the applied emf is 5.00V
Answer:
Explanation:
For the reaction
C2H5OH (l) + 3 O2(g) = 2CO2(g) + 3 H2O
We can calculate the standard molar enthalpy of combustion using the standard enthalpies of formation of the species involved in the reaction according to Hess law:
ΔHºc = 2ΔHºf CO2 (g) + 3ΔHºfH2O(l) - ( ΔHºf C2H5OH (l) - 3ΔHºfO2 (g) )
( we were not give the water state but we know we are at standard conditions so it is in its liquid state )
The ΔHºfs can be found in appropiate reference or texts.
ΔHºc = 2ΔHºf CO2 (g)+ 3ΔHºfH2O(l) - ( ΔHºf C2H5OH (l) -+3ΔHºfO2 (g) )
= [ 2 ( -393.52 ) + 3 ( -285.83 ) ] - [( -276.2 + 0 ) ] kJ
ΔHºc = -1368.33 kJ
Answer:
Explanation:
oxygen is a 15 and nitrogen science chemistry i'm guessing
Answer:
atoms are little things things thinbs timmy amrfiv
Explanation: