The question is incomplete, the complete question is:
The element tin has the following number of electrons per shell: 2.8. 18, 18, 4. Notice that the number of electrons in the outer shell of a tin atom is the same as that for a carbon atom. Therefore, what must be true of tin? Tin is a polar atom and can bind to other polar atoms. Tin has a high molecular weight to give tin-containing molecules greater stabilty. All of the above Tin conform single covalent bonds with other elements, but not double or triple covalent bonds Tincan bind to up to four elements at a time
Answer:
Tin can bind to up to four elements at a time
Explanation:
Certain important points were made in the question about tin and one of them is that tin is an element in the same group as carbon hence it has the same number of valence electrons as carbon.
Carbon is always tetra valent. The tetra valency of carbon is the idea that carbon forms four bonds.
If tin has the same number of valence electrons as carbon, then, tin can bind to up to four elements at a time
Variables we know:
t = 8 seconds
Vi = 0 m/s
g = -9.81
Δy = ?
Vf = ?
Equation we will be using to solve for Vf: Vf = Vi + gt
Steps to solve:
Vf = (0) + (-9.81)(8)
Vf = -78.48 m/s
Hope this helps!! :)
Answer:
no.
Explanation:
The reason this has
never happened is due to the source of magnetic fields: moving electric
charges. When electric charges (e.g. electrons) move in circles, they
produce a magnetic field. In a piece of iron, it is very easy to line up
these circles, getting all the little magnets to work together as one big
magnet.
For each of these circles, one side is the north pole and one side is the
south pole. Since each circle has two sides, each circle has a north and a
south pole. Even the smallest possible magnets (spinning electrons) have a
north and a south pole.
Water containing carbonic acid and calcium
The answer is surface tension