Let's solve your equation step-by-step.<span><span><span>0.2<span>(<span>x+50</span>)</span></span>−6</span>=<span>0.4<span>(<span><span>3x</span>+20</span>)</span></span></span>Step 1: Simplify both sides of the equation.<span><span><span>0.2<span>(<span>x+50</span>)</span></span>−6</span>=<span>0.4<span>(<span><span>3x</span>+20</span>)</span></span></span><span><span><span><span><span><span>(0.2)</span><span>(x)</span></span>+<span><span>(0.2)</span><span>(50)</span></span></span>+</span>−6</span>=<span><span><span>(0.4)</span><span>(<span>3x</span>)</span></span>+<span><span>(0.4)</span><span>(20)</span></span></span></span>(Distribute)<span><span><span><span><span>0.2x</span>+10</span>+</span>−6</span>=<span><span>1.2x</span>+8</span></span><span><span><span>(<span>0.2x</span>)</span>+<span>(<span>10+<span>−6</span></span>)</span></span>=<span><span>1.2x</span>+8</span></span>(Combine Like Terms)<span><span><span>0.2x</span>+4</span>=<span><span>1.2x</span>+8</span></span><span><span><span>0.2x</span>+4</span>=<span><span>1.2x</span>+8</span></span>Step 2: Subtract 1.2x from both sides.<span><span><span><span>0.2x</span>+4</span>−<span>1.2x</span></span>=<span><span><span>1.2x</span>+8</span>−<span>1.2x</span></span></span><span><span><span>−<span>1x</span></span>+4</span>=8</span>Step 3: Subtract 4 from both sides.<span><span><span><span>−<span>1x</span></span>+4</span>−4</span>=<span>8−4</span></span><span><span>−<span>1x</span></span>=4</span>Step 4: Divide both sides by -1.<span><span><span>−<span>1x</span></span><span>−1</span></span>=<span>4<span>−1</span></span></span><span>x=<span>−4</span></span>Answer:<span>x=<span>−<span>4</span></span></span>
Answer:
see the attachment
Step-by-step explanation:
We assume that the question is interested in the probability that a randomly chosen class is a Friday class with a lab experiment (2/15). That is somewhat different from the probability that a lab experiment is conducted on a Friday (2/3).
Based on our assumption, we want to create a simulation that includes a 1/5 chance of the day being a Friday, along with a 2/3 chance that the class has a lab experiment on whatever day it is.
That simulation can consist of choosing 1 of 5 differently-colored marbles, and rolling a 6-sided die with 2/3 of the numbers being designated as representing a lab-experiment day. (The marble must be replaced and the marbles stirred for the next trial.) For our purpose, we can designate the yellow marble as "Friday", and numbers greater than 2 as "lab-experiment".
The simulation of 70 different choices of a random class is shown in the attachment.
_____
<em>Comment on the question</em>
IMO, the use of <em>70 trials</em> is coincidentally the same number as the first <em>70 days</em> of school. The calendar is deterministic, so there will be exactly 14 Fridays in that period. If, in 70 draws, you get 16 yellow marbles, you cannot say, "the probability of a Friday is 16/70." You need to be very careful to properly state the question you're trying to answer.
Answer:
it is 2/3
Step-by-step explanation:
When x=42 that means it is 8x6 so that means that the y = 120 becuase its 20x6
answer= y=120