Answer:
9. 66°
10. 44°
11. 
12. 
13. 27.3
14. 33.9
15. 22°
16. 24°
Step-by-step explanation:
9. Add 120 + 80 (equals 200) and subtract that from 360 (Because all angles in a quadrilteral add to 360°), this equals 160. Plug the same number in for both variables in the two other angle equations until the two angles add to 160. For shown work on #9, write:
120 + 80 = 200
360 - 200 = 160
12(5) + 6 = 66°
19(5) - 1 = 94°
94 + 66 = 160
10. Because the two sides are marked as congruent, the two angles are as well. This means the unlabeled angle is also 68°. The interior angles of a triangle always add to 180°, so add 68+68 (equals 136) and subtract that from 180, this equals 44. For shown work on #10, write:
68 x 2 = 136
180 - 136 = 44
11. Use the Pythagorean theorem (a² + b² = c²) (Make sure to plug in the hypotenuse for c). Solve the equation. For shown work on #10, write:
a² + b² = c²
a² + 6² = 8²
a² + 36 = 64
a² = 28
a = 
a = 
12. (Same steps as #11) Use the Pythagorean theorem (a² + b² = c²) (Make sure to plug in the hypotenuse for c). Solve the equation. For shown work on #11, write:
a² + b² = c²
a² + 2² = 4²
a² + 4 = 16
a² = 12
a = 
a = 
13. Use SOH CAH TOA and solve with a scientific calculator. For shown work on #13, write:
Sin(47°) = 
x = 27.3
14. Use SOH CAH TOA and solve with a scientific calculator. For shown work on #14, write:
Tan(62°) = 
x = 33.9
15. Use SOH CAH TOA and solve with a scientific calculator. For shown work on #15, write:
cos(θ) = 52/56
θ = cos^-1 (0.93)
θ = 22°
16. (Same steps as #15) Use SOH CAH TOA and solve with a scientific calculator. For shown work on #16, write:
sin(θ) = 4/10
θ = sin^-1 (0.4)
θ = 24°
Good luck!!
Answer:
12.083
Explanation:
Plug into a calculator.
Answer:
A. y=3x but 3 is the slope
hope this helps
have a good day :)
Step-by-step explanation:

by the double angle identity for sine. Move everything to one side and factor out the cosine term.

Now the zero product property tells us that there are two cases where this is true,

In the first equation, cosine becomes zero whenever its argument is an odd integer multiple of

, so

where
![n[/tex ]is any integer.\\Meanwhile,\\[tex]10\sin x-3=0\implies\sin x=\dfrac3{10}](https://tex.z-dn.net/?f=n%5B%2Ftex%20%5Dis%20any%20integer.%5C%5CMeanwhile%2C%5C%5C%5Btex%5D10%5Csin%20x-3%3D0%5Cimplies%5Csin%20x%3D%5Cdfrac3%7B10%7D)
which occurs twice in the interval

for

and

. More generally, if you think of

as a point on the unit circle, this occurs whenever

also completes a full revolution about the origin. This means for any integer

, the general solution in this case would be

and

.