They should identify the confounding variable.
Some condition that is not examined by the scientist might alter the experiment result. That condition is called confounding variable. If the method of the experiment same but result is very different, there should be unidentified confounding variable. It could be air humidity, temperature, ventilation, light, time of the year or anything that might not be seen by naked eye.
Try to redo the experiment with controlling variable as much as possible.
Answer is: 2,0,0,±1/2.
1) n = 1. The principal quantum number (n) is one of four quantum numbers which are assigned to each electron in an atom to describe that electron's state.
2) l = 0. The azimuthal quantum number is a quantum number for an atomic orbital that determines its orbital angular momentum and describes the shape of the orbital.
3) ml = 0. Magnetic quantum number specify orientation of electrons in magnetic field and number of electron states (orbitals) in subshells.
Magnetic quantum number (ml) specifies the orientation in space of an orbital of a given energy and shape . Magnetic quantum number divides the subshell into individual orbitals which hold the electrons, there are 2l+1 orbitals in each subshell.
4) The spin quantum number, ms, is the spin of the electron; ms = +1/2 or -1/2.
How many oxygen molecules are in 22.4 liters of oxygen gas
at 273k and 101.3kpa
First solve the number of moles of the oxygen gas by using
the ideal gas equation:
PV = nRT
Where n is the number of moles
n = PV/RT
n = (101 300 Pa) (22.4 L) (1 m3/1000 L ) / ( 8.314 Pa m3 /
mol K) ( 273 K)
n = 1 mol O2
the number of molecules can be solve using avogrados number
6.022x10^23 molecule / mole
molecules of one mole O2 = 6.022x 10^23 molecules
None of them really sound like the answer, but my best guess would probably be the second one. It doesnt give much info.
Answer:
32g
Explanation:
We have to remember that for percent (w/w) concentration we usually write;
Percent concentration= mass of solute/mass of solution ×100
Since mass of solute= 14.7 g and percent concentration = 32.2%
Then
Mass of solution= mass of solute × 100/ percent concentration
Mass of solution= 14.7 ×100/32.2
Mass of solution= 46.7 g
Since mass of solution = mass of solute + mass of solvent
Mass of solute= 14.7 g
Mass of solution = 46.7g
Mass of solvent = 46.7g -14.7g = 32g