Answer:
D
Explanation:
The temperature increases
Answer:
![[SO_3]=0.25M](https://tex.z-dn.net/?f=%5BSO_3%5D%3D0.25M)
Explanation:
Hello there!
In this case, since the integrated rate law for a second-order reaction is:
![[SO_3]=\frac{[SO_3]_0}{1+kt[SO_3]_0}](https://tex.z-dn.net/?f=%5BSO_3%5D%3D%5Cfrac%7B%5BSO_3%5D_0%7D%7B1%2Bkt%5BSO_3%5D_0%7D)
Thus, we plug in the initial concentration, rate constant and elapsed time to obtain:
![[SO_3]=\frac{1.44M}{1+14.1M^{-1}s^{-1}*0.240s*1.44M}\\\\](https://tex.z-dn.net/?f=%5BSO_3%5D%3D%5Cfrac%7B1.44M%7D%7B1%2B14.1M%5E%7B-1%7Ds%5E%7B-1%7D%2A0.240s%2A1.44M%7D%5C%5C%5C%5C)
![[SO_3]=0.25M](https://tex.z-dn.net/?f=%5BSO_3%5D%3D0.25M)
Best regards!
Answer:
will have a greater partial charge.
Explanation:
A polar covalent bond is defined as the bond which is formed when there is a low difference of electronegativities between the atoms, thus resulting in charge difference. Example: 
Non-polar covalent bond is defined as the bond which is formed when there is no difference of electronegativities between the atoms and thus there is no charge difference. Example: 
Ionic bond is formed when there is complete transfer of electron from a highly electropositive metal to a highly electronegative non metal. The electronegative difference between the elements is high. The charges on cation and anion neutralise each other. Example: 
Thus as
will have greater partial charge.
Second- Beryllium (Be)
Third- Magnesium (Mg)
Fourth- Calcium (Ca)
Fifth- Strontium (Sr)
A). The weaker the IMF the lower the evaporation rates of each liquid. So Pentane had the weakest IMF and Butanol has the strongest.
b).They all evaporate at different rates because of their differences in their bonds. Not all liquids are the same and they will all most likely evaporate at different times