Answer:
Step-by-step explanation:
The point of this question is to find out the point where two lines intersect. First we need to get the equation of those lines
Slope of line 1:
(Yb -Ya)/(Xb - Xa) =
(-10 - (-14))/(-1 - (-3)) =
4/2 =
2
Use that slope to find the Y-intercept of line 1
y = 2x + b
-14 = 2(-3) +b
-14 = -6 + b
-8 = b
Therefore Line 1 is:
y = 2x - 8
Slope of line 2
(11 - 13)/(-1 - (-3)) =
-2/2 =
-1
Y-intercept of line 2
y = -x + b
13 = -(-3) +b
13 = 3 + b
10 = b
Therefore line 2 is
y = -x + 10
Now we have 2 equations to solve for the coordinates x and y
y = 2x - 8
y = -x + 10
Substitute y out in one of the equations
2x - 8 = -x + 10
3x = 18
x = 6
Plug x into one of the equations
y = 2(6) - 8
y = 12 - 8
y = 4
Therefore the solution is:
x=6, y=4
8h/3+19
Move all terms to the left
8-(h/3+19)=0
Get rid of parentheses
-h/3-19+8=0
Multiply all terms by denominator
-h-19*3+8*3=0
Add all numbers and variables together
-1h-33=0
Move all terms containing h to the left all other terms to the right
-h=33
h=33/-1
h=-33
The correct slope is -5/2.
The formula for slope is
m = (y₂-y₁)/(x₂-x₁)
The y-coordinate of the second point is 0, and the y-coordinate of the first point is 2. The x-coordinate of the second point is 0.8 and the x-coordinate of the first point is 0:
m = (0-2)/(0.8-0) = -2/0.8 = -2 ÷ 8/10 = -2 × 10/8 = -2/1 × 10/8 = -20/8 = -5/2
Answer:
6m
Step-by-step explanation:
If it doesn't move it's just the same force