Answer:
Solution: x = 2, y = -1 or (2, -1)
Step-by-step explanation:
Equation 1: 2x + y = 3
Equation 2: 5x - 2y = 12
Using the substitution method:
Transform the Equation 1 into its slope-intercept form:
2x + y = 3
2x - 2x + y = -2x + 3
y = 2x + 3
Substitute the value of y = -2x + 3 into Equation 2:
5x - 2y = 12
5x - 2(-2x + 3) = 12
5x + 4x - 6 = 12
9x - 6 = 12
9x - 6 + 6 = 12 + 6
9x = 18
9x/9 = 18/9
x = 2
Substitute the value of x = 2 into Equation 2 to solve for y:
5x - 2y = 12
5(2) - 2y = 12
10 - 2y = 12
10 - 10 - 2y = 12 - 10
-2y = 2
-2y/-2 = 2/-2
y = -1
Double-check whether the values for x and y will provide a true statement for both equations:
Equation 1: 2x + y = 3
2(2) + (-1) = 3
4 - 1 = 3
3 = 3 (True statement)
Equation 2: 5x - 2y = 12
5(2) - 2(-1) = 12
10 + 2 = 12
12 = 12 (True statement)
Therefore, the correct answers are: x = 2; y = -1 or (2, -1).
Answer:
The equation of the line that goes through points (1,1) and (3,7) is 
Step-by-step explanation:
Determine the equation of the line that goes through points (1,1) and (3,7)
We can write the equation of line in slope-intercept form
where m is slope and b is y-intercept.
We need to find slope and y-intercept.
Finding Slope
Slope can be found using formula: 
We have 
Putting values and finding slope

We get Slope = 3
Finding y-intercept
y-intercept can be found using point (1,1) and slope m = 3

We get y-intercept b = -2
So, equation of line having slope m=3 and y-intercept b = -2 is:

The equation of the line that goes through points (1,1) and (3,7) is 
Answer:
4821
Step-by-step explanation:
Answer:

Step-by-step explanation:
We have to calculate the time derivative of T=PV/nR with P and V variable and n and R constants. This is:

What we have to do is the derivative of a product:

Substituting, we have:

where all these values are given since the time derivatives of P and V are their variation rate, using minutes.
We then substitute everything, noticing that already everything is in the same system of units so they cancel out:

And then just calculate:
