Answer:
Given : BRDG is a kite that is inscribed in a circle,
With BR = RD and BG = DG
To prove : RG is a diameter
Proof:
Since, RG is the major diagonal of the kite BRDG,
By the property of kite,
∠ RBG = ∠ RDG
Also, BRDG is a cyclic quadrilateral,
Therefore, By the property of cyclic quadrilateral,
∠ RBG + ∠ RDG = 180°
⇒ ∠ RBG + ∠ RBG = 180°
⇒ 2∠ RBG = 180°
⇒ ∠ RBG = 90°
⇒ ∠ RDG = 90°
Since, Angle subtended by a diameter or semicircle on any point of circle is right angle.
⇒ RG is the diameter of the circle.
Hence, proved.
Answer:
78=p
$150
$20
6 bowls
Step-by-step explanation:
Answer:
f(x)= x^3
Step-by-step explanation:
Divide each term in the numerator by the denominator...
2xy^2-1