The atoms of hydrogen that are present in 7.63 g of ammonia(NH3)
find the moles of NH3 =mass/molar mass
7.63 g/ 17 g/mol = 0.449 moles
since there is 3 atoms of H in NH3 the moles of H = 0.449 x 3 = 1.347 moles
by use of 1 mole = 6.02 x10^23 atoms
what about 1.347 moles
= 1.347 moles/1 moles x 6.02 x10^23 atoms = 8.11 x10^23 atoms of Hydrogen
<h3>
Answer:</h3>
0.111 J/g°C
<h3>
Explanation:</h3>
We are given;
- Mass of the unknown metal sample as 58.932 g
- Initial temperature of the metal sample as 101°C
- Final temperature of metal is 23.68 °C
- Volume of pure water = 45.2 mL
But, density of pure water = 1 g/mL
- Therefore; mass of pure water is 45.2 g
- Initial temperature of water = 21°C
- Final temperature of water is 23.68 °C
- Specific heat capacity of water = 4.184 J/g°C
We are required to determine the specific heat of the metal;
<h3>Step 1: Calculate the amount of heat gained by pure water</h3>
Q = m × c × ΔT
For water, ΔT = 23.68 °C - 21° C
= 2.68 °C
Thus;
Q = 45.2 g × 4.184 J/g°C × 2.68°C
= 506.833 Joules
<h3>Step 2: Heat released by the unknown metal sample</h3>
We know that, Q = m × c × ΔT
For the unknown metal, ΔT = 101° C - 23.68 °C
= 77.32°C
Assuming the specific heat capacity of the unknown metal is c
Then;
Q = 58.932 g × c × 77.32°C
= 4556.62c Joules
<h3>Step 3: Calculate the specific heat capacity of the unknown metal sample</h3>
- We know that, the heat released by the unknown metal sample is equal to the heat gained by the water.
4556.62c Joules = 506.833 Joules
c = 506.833 ÷4556.62
= 0.111 J/g°C
Thus, the specific heat capacity of the unknown metal is 0.111 J/g°C
The answer is (4) Ag(s)
Solid Silver has a Face Centered Cubic crystal structure.
The remaining choices are gases (H2 & Ar) and liquid (Br). Liquids and gases do not form crystal structures as their atoms are loose.
Answer:
The answer is option 3.
Explanation:
When salt is added to the water, the boiling point increases because it needs to take in more energy from heat to <u>b</u><u>r</u><u>e</u><u>a</u><u>k</u><u> </u><u>d</u><u>o</u><u>w</u><u>n</u> the bonds and dissolve the salt in the water.
(Correct me if I am wrong)