<u>Answer:</u> The molality of the solution is 0.11 m
<u>Explanation:</u>
We are given:
Mole fraction of methanol = 0.135
This means that 0.135 moles of methanol is present in 1 mole of a solution
Moles of ethanol = 1 - 0.135 = 0.865 moles
To calculate the mass for given number of moles, we use the equation:

Moles of ethanol = 0.865 moles
Molar mass of ethanol = 46 g/mol

To calculate the molality of solution, we use the equation:

Where,
= Given mass of solute (methanol) = 0.135 g
= Molar mass of solute (methanol) = 32 g/mol
= Mass of solvent (ethanol) = 39.79 g
Putting values in above equation, we get:

Hence, the molality of the solution is 0.11 m
The reducing agent in the reaction 2Li(s) + Fe(CH₃COO)₂(aq) → 2LiCH₃COO(aq) + Fe(s) is lithium (Li).
The general reaction is:
2Li(s) + Fe(CH₃COO)₂(aq) → 2LiCH₃COO(aq) + Fe(s) (1)
We can write the above reaction in <u>two reactions</u>, one for oxidation and the other for reduction:
Li⁰(s) → Li⁺(aq) + e⁻ (2)
Fe²⁺(aq) + 2e⁻ → Fe⁰(s) (3)
We can see that Li⁰ is oxidizing to Li⁺ (by <u>losing</u> one electron) in the lithium acetate (<em>reaction 2</em>) and that Fe²⁺ in iron(II) acetate is reducing to Fe⁰ (by <u>gaining</u> two <em>electrons</em>) (<em>reaction 3</em>).
We must remember that the reducing agent is the one that will be oxidized by <u>reducing another element</u> and that the oxidizing agent is the one that will be reduced by <u>oxidizing another species</u>.
In reaction (1), the<em> reducing agent</em> is <em>Li</em> (it is oxidizing to Li⁺), and the <em>oxidizing agent </em>is<em> Fe(CH₃COO)₂</em> (it is reducing to Fe⁰).
Therefore, the reducing agent in reaction (1) is lithium (Li).
Learn more here:
I hope it helps you!
A. Gamma radiation because it reaches further than beta and alpha rays
Answer:
Benefits of the flea from living on a dog
Explanation:
They feed on the blood of the dog. They deliver about 4000 eggs on the hosts fur.
<u>Answer:</u> The correct answer is isotopes generally have the same chemical properties, but often different nuclear properties.
<u>Explanation:</u>
Isotopes are defined as the chemical species of the same element which have same atomic number but differ in their mass number.
Atomic number is defined as the number of protons or electrons that are present in a neutral atom.
Atomic number = number of protons = number of electrons
Mass number is defined as the sum of number of protons and neutrons that are present in an atom.
Mass number = Number of protons + Number of neutrons
Nuclear properties of an element is determined by the number of protons and neutrons present in a nucleus.
Chemical properties of an element is determined by the number of electrons present in an atom.
Isotopes have same atomic number, this means that they have same number of protons and electrons but they differ in mass number, which means that they differ in number of neutrons.
Hence, isotopes will have same chemical properties but different nuclear properties.