Answer: 8.28g Na
Explanation: use ideal gas law
PV= nRT
Solve for moles of Cl2
n= PV/ RT
Substitute:
= 1 atm x 4.0 L / 0.08205 L.atm/ mol. K x 273 K
= 0.18 moles Cl2
Do stoichiometry to solve for m of Na
2 Na + Cl2 => 2 NaCl2
=0.18 moles Cl2 x 2 mol Na/ 1 mol Cl2 x 23g Na / 1 mol Na
= 8.28 g Na.
<span> </span>
Answer
is: volume is 20 mL.<span>
c</span>₁(CH₃COOH) = 2,5 M.<span>
c</span>₂(CH₃COOH) = 0,5 M.<span>
V</span>₂(CH₃COOH) = 100 mL.<span>
V</span>₁(CH₃COOH) = ?<span>
c</span>₁(CH₃COOH) · V₁(CH₃COOH)
= c₂(CH₃COOH) · V₂(CH₃COOH).<span>
2,5 M · V</span>₁(CH₃COOH)
= 0,5 M · 100 mL.<span>
V</span>₁(CH₃COOH) = 0,5 M · 100 mL ÷ 2,5 M.<span>
V</span>₁(CH₃COOH) = 20 mL ÷ 1000 mL/L =0,02 L.
Density= mass/volume
= 100/25
density = 4g/ml
Answer:
Nuclear fusion plays an important role in making elements that are heavier than helium.
Explanation:
Nucleosynthesis is the process by which new atomic nuclei are created from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in a process called Big Bang nucleosynthesis.
In order to synthesize a new element, there must be a change in the number of protons. We should remember that elements are known by the number of their protons as it represents their atomic number.
Elements heavier than helium are formed by nuclear nucleosynthesis in which nuclear fusion plays a very crucial role as typified by the equations shown in the question.
The formula for the compounds in the reaction are as follows with the respective states
Carbon monoxide - CO (g)
hydrogen - H₂ (g)
methane - CH₄(g)
water - H₂O (l)
reaction of carbon monoxide with hydrogen gas gives rise to methane and water
the balanced chemical equation for the above reaction is as follows
CO(g) + 3H₂(g) --> CH₄(g) + H₂O(l)