Answer:

Step-by-step explanation:

Trying to factor by splitting the middle term
Factoring <span> b2-4b+4</span>
The first term is, <span> <span>b2</span> </span> its coefficient is <span> 1 </span>.
The middle term is, <span> -4b </span> its coefficient is <span> -4 </span>.
The last term, "the constant", is <span> +4 </span>
Step-1 : Multiply the coefficient of the first term by the constant <span> 1 • 4 = 4</span>
Step-2 : Find two factors of 4 whose sum equals the coefficient of the middle term, which is <span> -4 </span>.
<span><span> </span></span>
<span><span>-4 + -1 = -5</span><span> -2 + -2 = -4 That's it</span></span>
Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above, -2 and -2
<span>b2 - 2b</span> - 2b - 4
Step-4 : Add up the first 2 terms, pulling out like factors :
b • (b-2)
Add up the last 2 terms, pulling out common factors :
2 • (b-2)
Step-5 : Add up the four terms of step 4 :
(b-2) • (b-2)
Which is the desired factorization
Step-by-step explanation:
it filled up half the circle (up to the center point) - if we had a full circle. but a little bit is cut off (below AB).
what we see is that the shaded area is the sum of the area of the triangle AOB and 2 equally sized circle segment areas left and right of AOB.
since we are dealing with a half-circle, we have 180° in total. 120° are taken by AOB, so, that leaves us with 180-120 = 60° for both circle segments (so, one has an angle of 30°).
and 2×30° = 1×60°, so we can calculate the area of one 60° segment instead of two 30° segments.
AOB is an isoceles triangle (the legs are equally long, and therefore also the 2 side angles are equal).
the area of this triangle AOB is
1/2 × a × b × sin(C) = 1/2 × 3 × 3 × sin(120) =
= 3.897114317... m²
a circle segment area of 60° is 60/360 = 1/6 of the full circle area (as a full circle = 360°).
so, it's area is
pi×r² × 1/6 = pi×3²/6 = pi×3/2 = 4.71238898... m²
so, the total area of the shaded area is
3.897114317... m² + 4.71238898... m² =
= 8.609503297... m²