Answer:
(a) 0.942 m
(b) 18.84 m/s
(c) 2366.3 m/s²
(d) 0.05 s
Explanation:
(a) In one revolution, it travels through one circumference, 2πr = 2 × 3.14 × 0.15 m = 0.942 m.
(b) Its frequency, f, is 1200 rev/min =
rev/s = 20 rev/s.
Its angular frequency, ω = 2πf = 2π × 20 = 40π
The speed is given by
v = ωr = 40π × 0.15 = 6π = 18.84 m/s
(c) Its acceleration is given by, a = ω²r = (40π)² × 0.15 = 2366.3 m/s²
(d) The period is the inverse of the frequency because it is the time taken to complete one revolution.

T = 1/20 = 0.05 s
Force is the ability to cause masses to accelerate.
Without force, you could not make stuff accelerate.
If something was moving, you could not make it speed up, slow down, stop, or go in a different direction.
If a thing was not moving, you could not make it move at all.
Answer:
d) v1 = v2 = v3
Explanation:
This can be answered using conservation of energy. We calculate the mechanical energy E=K+U (sum of kinetic and gravitational potential energies) at the original and final points, and impose they are equal.
At the original point we have, for the three balls:

At the final point we have, for the three balls:

Since we have
, and
is the same for all balls, then
is the same for all balls, which means that
, the final velocity, is the same for all balls.
Answer:
The magnitude of the acceleration is 1.2 × 10⁴ mi/h²
Explanation:
Hi there!
The acceleration is defined as the change in velocity in a time:
a = Δv / Δt
Where:
a = acceleration.
Δv = change in velocity = final velocity - initial velocity.
Δt = elapsed time.
In this case:
Initial velocity = 60 mi/h
final velocity = 50 mi/h
elapsed time = 3.0 s
Let´s convert the time unit into h:
3.0 s · 1 h /3600 s = 1/1200 h
Now, let´s calculate the acceleration:
a = Δv / Δt
a = (50 mi/h - 60 mi/h) / 1/1200 h
a = -1.2 × 10⁴ mi/h²
The magnitude of the acceleration is 1.2 × 10⁴ mi/h²
Answer:
force; distance; energy.
Explanation:
An impulse can be defined as the net force acting an object for a very short period of time.
Mathematically, impulse is given by the formula;
An impulse is a force acting over some amount of time to cause a change in momentum. On the other hand, work is a force acting over some amount of distance to cause a change in energy.
Mathematically, work done is given by the formula;