Answer:
W = 200 J
Explanation:
Work will be equal to the change in kinetic energy
W = ½mv² - 0
W = ½(0.010)200²
W = 200 J
The line charge E-field Ec = λ/(2πr*e0),
where λ = charge/length and e0 is the permittivity constant = 8.8542E-12 F/m.
<span>The point charge E-field Ep = kq/r^2 where electrostatic constant k = 1/(4π*e0) = 8.99E9 N-m^2/C^2.</span>
First, solve for the acceleration of the car. You know the mass of the car and the braking force, so you can use the equation Force = Mass x Acceleration. This gives you 12,000 = 2,000 x A. Divide 12,000 by 2,000 to find the acceleration equal to 6 m/s^2. This is the rate that the car is slowing down at. Velocity is equal to accleration x time (rate x time), so you multiply 6 by the time of 5 seconds. This leaves you with a velocity of 30 m/s or about 67.1 mph.
100m ÷ 50s = 2m/s
Just some simple divison.
Explanation:
given solution
h=45m v^2=u^2+2gh
g=10m/s^2 v^2=0^2+2×10m/s^2×45m
vi=0 v^2=900m^2/s^2