1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
devlian [24]
3 years ago
7

Need help! What is true about the relationship among wavelength, frequency, and energy in electromagnetic radiation?

Physics
2 answers:
lesantik [10]3 years ago
7 0
I believe the answer is D

postnew [5]3 years ago
4 0
The answer is D I just took the test
You might be interested in
If your friend drops a chocolate bar to you from a height of 5.0 m above your hands,
Sladkaya [172]

Answer:

<h3>1.01 s</h3>

Explanation:

Using the equation of motion S = ut+1/2gt² to solve the problem where;

u is the initial velocity of the chocolate = 0m/s

t is the time taken

g is the acceleration due to gravity = 9.81m/s²

S is the height of fall = 5.0m

Substituting the given parameter into the formula to get the time t we have;

5 = 0(t)+1/2(9.81)t²

5 = 4.905t²

t² = 5/4.905

t² = 1.019

t = √1.019

t = 1.009 secs

<em>Hence it will take 1.01 secs for me to catch the chocolate bar</em>

6 0
3 years ago
suppose a car manufacturer tested its cars for front end collsion by hauling them up on a crane and dropping them from a certain
IRINA_888 [86]

Initial height: 66.5 m

Explanation:

The problem can be solved by using the principle of conservation of energy.

If we neglect air resistance, the total mechanical energy of the car is conserved during the fall, therefore we can write:

K_i + U_i = K_f + U_f

where :

K_i = 0 is the kinetic energy of the car at the top (it starts from rest)

U_i = mgh is the gravitational potential energy of the car at the top, with:

m = the mass of the car

g = the acceleration of gravity

h = the heigth of the car

K_f = \frac{1}{2}mv^2 is the kinetic energy of the car just before hitting the ground, with

v = 130 km/h final speed of the car

U_f = 0 is the gravitational potential energy of the car at the bottom

Re-arranging the equation,  we find

mgh=\frac{1}{2}mv^2

and we have:

g=9.8 m/s^2\\v = 130 km/h = 36.1 m/s

Solving for h, we find the initial height of the car:

h=\frac{v^2}{2g}=\frac{36.1^2}{2(9.8)}=66.5 m

Learn more about kinetic energy and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647  

brainly.com/question/10770261  

#LearnwithBrainly

5 0
3 years ago
which statements about velocity are true? check all that apply. a. for velocity, you must have a number, a unit, and a direction
satela [25.4K]
a). for velocity, you must have a number, a unit, and a direction.
Yes.  This one isn't bad.  The 'number' and the 'unit' are the speed.

b). the si units for velocity are miles per hour.
No.  That's silly. 
'miles' is not an SI unit, and 'miles per hour'
is only a speed, not a velocity. 

c). the symbol for velocity is .
You can use any symbol you want for velocity, as long as
you make its meaning very clear, so that everybody knows
what symbol you're using for velocity.
But this choice-c is still wrong, because either it's incomplete,
or else it's using 'space' for velocity, which is a very poor symbol.

d). to calculate velocity, divide the displacement by time.
Yes, that's OK, but you have to remember that the displacement
has a direction, and so does the velocity.
3 0
3 years ago
The L-ft ladder has a uniform weight of W lb and rests against the smooth wall at B. θ = 60. If the coefficient of static fricti
Colt1911 [192]

This question is incomplete, the complete question;

The L-ft ladder has a uniform weight of W lb and rests against the smooth wall at B. θ = 60. If the coefficient of static friction at A is μ = 0.4.

Determine the magnitude of force at point A and determine if the ladder will slip. given the following; L = 10 FT, W = 76 lb

Answer:

- the magnitude of force at point A is 79.1033 lb

- since FA < FA_max; Ladder WILL NOT slip

Explanation:

Given that;

∑'MA = 0

⇒ NB [Lsin∅] - W[L/2.cos∅] = 0

NB = W / 2tan∅ -------let this be equation 1

∑Fx = 0

⇒ FA - NB = 0

FA = NB

therefore from equation 1

FA = NB = W / 2tan∅

we substitute in our values

FA = NB = 76 / 2tan(60°) = 21.9393 lb

Now ∑Fy = 0

NA - W = 0

NA = W = 76 lb

Net force at A will be

FA' = √( NA² + FA²)

= √( (W)² + (W / 2tan∅)²)

we substitute in our values

FA' = √( (76)² + (21.9393)²)

= √( 5776 + 481.3328)

= √ 6257.3328

FA' = 79.1033 lb

Therefore the magnitude of force at point A is 79.1033 lb

Now maximum possible frictional force at A

FA_max = μ × NA

so, FA_max = 0.4 × 76

FA_max = 30.4 lb

So by comparing, we can easily see that the actual friction force required for keeping the the ladder stationary i.e (FA) is less than the maximum possible friction available at point A.

Therefore since FA < FA_max; Ladder WILL NOT slip

5 0
3 years ago
Semi-trailer trucks have an odometer on one hub of a trailer wheel. The hub is weighted so that it does not rotate, but it conta
shtirl [24]

Answer:

1020 km

Explanation:

A complete rotation of the wheel equals a distance of 1 circumference.

The circumference is

C = \pi d

where <em>d</em> is the diameter of the wheel.

300,000 rotations = 300000\pi d = 300000\times\pi\times1.08\text{ m} = 1017876.0\ldots\text{ m}

In kilometers, this is = 1017876/1000 km = 1020 km

6 0
3 years ago
Other questions:
  • The 630 nm light from a helium neon laser irradiates a grating. The light then falls on a screen where the first bright spot is
    9·1 answer
  • a layer of sandstone is in contact with a mass of granite. the sandstone contains small fragments of the granite. which rock is
    7·1 answer
  • An 800-N billboard worker stands on a 4.0-m scaffold weighing 500 N and supported by vertical ropes at each end. How far would t
    8·1 answer
  • 8. An unpowered flywheel is slowed by a constant frictional torque. At time t = 0 it has an angular velocity of 200 rad/s. Ten s
    7·1 answer
  • A resistor is connected across an oscillating emf. The peak current through the resistor is 2.0 A. What is the peak current if:
    5·1 answer
  • in order to generate electricity, nuclear powerplants take advantage of this part of the electromagnetic spectrum
    10·1 answer
  • A string is stretched to a length of 339 cm and both ends are fixed. If the density of the string is 0.0073 g/cm, and its tensio
    11·1 answer
  • You can enter compound units that are combinations of other units that are multiplied together.Torque can be calculated by multi
    5·1 answer
  • Two loudspeakers placed 8.0 m apart are driven in phase by an audio oscillator whose frequency range is 2.2 kHz to 2.9 kHz. A po
    14·1 answer
  • The voltage across the terminals of an ac power supply varies with time according to V=V0cos(t). The voltage amplitude is V0 = 4
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!