Answer:
No temperature change occurs from heat transfer if ice melts and becomes liquid water (i.e., during a phase change). For example, consider water dripping from icicles melting on a roof warmed by the Sun. Conversely, water freezes in an ice tray cooled by lower-temperature surroundings.
Explanation:
Energy is required to melt a solid because the cohesive bonds between the molecules in the solid must be broken apart such that, in the liquid, the molecules can move around at comparable kinetic energies; thus, there is no rise in temperature. Similarly, energy is needed to vaporize a liquid, because molecules in a liquid interact with each other via attractive forces. There is no temperature change until a phase change is complete. The temperature of a cup of soda initially at 0ºC stays at 0ºC until all the ice has melted. Conversely, energy is released during freezing and condensation, usually in the form of thermal energy. Work is done by cohesive forces when molecules are brought together. The corresponding energy must be given off (dissipated) to allow them to stay together Figure 2.
The energy involved in a phase change depends on two major factors: the number and strength of bonds or force pairs. The number of bonds is proportional to the number of molecules and thus to the mass of the sample. The strength of forces depends on the type of molecules. The heat Q required to change the phase of a sample of mass m is given by
Q = mLf (melting/freezing,
Q = mLv (vaporization/condensation),
where the latent heat of fusion, Lf, and latent heat of vaporization, Lv, are material constants that are determined experimentally.
The relationship between the number of visible spectral lines are identical for atoms .However they have unique wavelengths.
Option B
<u>
Explanation:</u>
A spectrum is a range of frequencies or a range of wavelengths. The photon energy of the emitted photon is equal to the difference between two states. For every atom there are quite many electron transitions and each has a energy difference.
This difference in wavelength causes spectrum .As each element emission spectrum is unique because each atom has different energy and causes uniqueness in the emission spectrum . Hence, due to the difference in energy it emits different wavelengths.
It means you can do 550 Newton Meters of work every second. Power is the rate of doing work, I hope this helps
Answer:
B
Explanation:
Atomic structure contains electrons, protons and neutrons.
Electron is very light compared to proton and neutrons.
Given that the mass of an electron is
A) equal to the mass of a proton
B) less than the mass of a neutron
C) greater than the mass of a proton
D) equal to the mass of a neutron
The correct answer is B which is less than the mass of the neurons.