The sprinter’s average acceleration is 1.98 m/s²
The given parameters;
- initial velocity of the sprinter, u = 18 km/h
- final velocity of the sprinter, v = 27 km/h
- time of motion of the sprinter, t = 3.5 x 10⁻⁴ h
Convert the velocity of the sprinter to m/s;

The time of motion is seconds;

The sprinter’s average acceleration is calculated as follows;

Thus, the sprinter’s average acceleration is 1.98 m/s²
Learn more here:brainly.com/question/17280180
Answer:
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one ... Typical radio wave frequencies are about 88~108 MHz .
Explanation:
To calculate the wavelength of a radio wave, you will be using the equation: Speed of a wave = wavelength X frequency.
Since radio waves are electromagnetic waves and travel at 2.997 X
10
8
meters/second, then you will need to know the frequency of the radio wave.
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one million hertz. If the radio wave is from an AM radio station, these are in kilohertz (there are one thousand hertz in a kilohertz). Hertz are waves/second. Hertz is usually the label for the frequency of electromagnetic waves.
To conclude, to determine the wavelength of a radio wave, you take the speed and divide it by the frequency.
Typical radio wave frequencies are about
88
~
108
MHz
. The wavelength is thus typically about
3.41
×
10
9
~
2.78
×
10
9
nm
.