1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rasek [7]
3 years ago
13

In the number 114.92 what digit is in the ones place?

Mathematics
2 answers:
AnnZ [28]3 years ago
8 0
Hundredths es la respuesta.
sergeinik [125]3 years ago
7 0
The number places go ones, tens, hundreds, thousands, ignore the decimals
You might be interested in
Ejiro is 8yrs older than her sister the sum of their ages is64yrs what is ejiro age in years​
Alika [10]

Answer:

36

Step-by-step explanation:

Ejiro + her sister's age = 64

Ejiro is 8 years older so (64 - 8) ÷ 2 = 28 her sister is 28 years old and ejiro is 28 + 8 = 36 years old

8 0
3 years ago
Read 2 more answers
What is the interior angle of a regular 25 gon
OLga [1]

Answer:

schläfli symbol {50}, t{25}

Coxeter diagram  

Symmetry group Dihedral (D50), order 2×50

Internal angle (degrees) 172.8°

5 more rows

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
(10)+(-5)+(-5)+(-10)
BARSIC [14]
The answer to this question is -10
3 0
3 years ago
Read 2 more answers
Select all the ratios that are equivalent to the ratio 12 : 3. Explain how you know.
oksano4ka [1.4K]

Answer:

the answers are c, d, &f

Step-by-step explanation:

the equivalence to 12:3

1200:300. = 12:3 (reduce by 100)

12:3= 4:1 (reduce by 3)

24:6= 12:3 (reduce by 2)

3 0
3 years ago
Read 2 more answers
BRAINLIESSTTTT ASAP !!!!!!!!!! 20 pointssss
Mars2501 [29]
Answers:  
_____________________________________________________
   Part A)  " (3x + 4) " units  . 
_____________________________________________________
   Part B)  "The dimensions of the rectangle are:

                             " (4x + 5y) " units ;  <u>AND</u>:  " (4x − 5y)"  units."
_____________________________________________________

Explanation for  Part A):
_____________________________________________________

Since each side length of a square is the same; 
   
    Area = Length * width = L * w ;  L = w  = s = s ;

      in which:  " s = side length" ;

So, the Area of a square, "A"  = L * w = s * s = s² ;

{<u>Note</u>:  A "square" is a rectangle with 4 (four) equal sides.}.

→  Each side length, "s", of a square is equal.

Given:  s² = "(9x² + 24x + 16)" square units ;

Find "s" by factoring: "(9x² + 24x + 16)" completely:

   →  " 9x² + 24x + 16 ";

Factor by "breaking into groups" :

"(9x² + 24x + 16)"  = 

    →  "(9x² + 12x) (12x + 16)" ;
_______________________________________________________

Given:   " (9x² + 24x + 16) " ; 
_______________________________________________________
Let us start with the term:
_______________________________________________________

" (9x² + 12x) " ; 

    →  Factor out a "3x" ;  → as follows:
_______________________________________

    → " 3x (3x + 4) " ; 

Then, take the term:
_______________________________________
    → " (12x + 16) " ;

And factor out a "4" ;   →  as follows:
_______________________________________

    → " 4 (3x + 4) " 
_______________________________________
We have:

" 9x² + 24x + 16 " ;

    =  " 3x (3x + 4)  +  4(3x + 4) " ;
_______________________________________
Now, notice the term:  "(3x + 4)" ; 

We can "factor out" this term:

3x (3x + 4)  +  4(3x + 4)  = 

     →  " (3x + 4) (3x + 4) " .  → which is the fully factored form of:

                                                   " 9x² + 24x + 16 "  ; 
____________________________________________________
     →  Or; write:  "  (3x + 4) (3x + 4)" ; as:  " (3x + 4)² " .
____________________________________________________
     →  So,  "s² = 9x² + 24x + 16 " ; 

Rewrite as:  " s² = (3x + 4)² " .

     →  Solve for the "positive value of "s" ; 

     →  {since the "side length of a square" cannot be a "negative" value.}.
____________________________________________________
     →  Take the "positive square root of EACH SIDE of the equation; 
              to isolate "s" on one side of the equation; & to solve for "s" ;

     →  ⁺√(s²)  =  ⁺√[(3x + 4)²]   '

To get:

     →  s  = " (3x + 4)" units .
_______________________________________________________

Part A):  The answer is:  "(3x + 4)" units.
____________________________________________________

Explanation for Part B):

_________________________________________________________<span>

The area, "A" of a rectangle is:

    A = L * w ;  

 in which "A" is the "area" of the rectangle;
                "L" is the "length" of the rectangle; 
                "w" is the "width" of the rectangle; 
_______________________________________________________
  Given:  " A = </span>(16x² − 25y²) square units" ;  
   
       →  We are asked to find the dimensions, "L" & "w" ;
       →  by factoring the given "area" expression completely:
____________________________________________________
  → Factor:  " (16x² − 25y²) square units " completely '

Note that:  "16" and: "25" are both "perfect squares" ;
      
We can rewrite: " (16x² − 25y²) "  ;   as:

       =   " (4²x²)  −  (5²y²) " ; and further rewrite the expression:
________________________________________________________
Note:  
________________________________________________________
" (16x²) " ;  can be written as:  "(4x)² " ;

 ↔ " (4x)²  =  "(4²)(x²)" = 16x² "


Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 16x² = (4²x²) = (4x)² " . 
_______________________________________________________
Note:
_______________________________________________________

     →   " (25x²) " ;  can be written as:  " (5x)² " ; 

        ↔   "( 5x)²  =  "(5²)(x²)" = 25x² " ; 

Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 25x² = (5²x²) = (5x)² " . 
______________________________________________________

→  So, we can rewrite:  " (16x² − 25y²) " ;  

as:  " (4x)² − (5y)² " ;   
 
    → {Note:  We substitute: "(4x)² "  for "(16x²)" ; & "(5y)² "  for "(25y²)" .} . ; 
_______________________________________________________
→  We have:  " (4x)² − (5y)² " ;

→  Note that we are asked to "factor completely" ; 

→  Note that:  " x² − y² = (x + y) (x − y) " ;

      → {This property is known as the "<u>difference of squares</u>".}.

→ As such:  " (4x)² − (5y)² " = " (4x + 5y) (4x − 5y) " .
_______________________________________________________
Part B):  The answer is:  "The dimensions of the rectangle are:

                              " (4x + 5y) " units ;  AND:  " (4x − 5y)"  units."
_______________________________________________________
7 0
3 years ago
Other questions:
  • What are the 4 translations for functions
    15·2 answers
  • A rectangular prism with a volume of
    15·1 answer
  • If one factor of 56x^4-42x^2y6 is 14x^2y^3 what is the other factor?
    8·1 answer
  • Complete the sentence to make it a true statement. 60 is 1/100 of
    6·1 answer
  • Which of the following is true of the data set represented by the box plot?
    9·2 answers
  • Can someone help me with this :/
    6·1 answer
  • Algebra 2<br><br> Solve each equation to the nearest thousand <br><br> Help pls
    5·1 answer
  • What is the area of this figure?<br><br><br><br> Enter your answer in the box.<br><br> ( )
    7·2 answers
  • **i would appreciate it if someone helped! ** Here is a number pyramid puzzle.
    7·1 answer
  • Solve (x + y +2)(y + 1)
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!