Answer:
denominators are zero for x=1
there is no solution
Step-by-step explanation:
We suspect your equation is supposed to be ...
10/(5x -5) +1/5 = 2/(x -1) . . . . . parentheses are required on denominators
The denominators will be zero for x=1.
This version of the equation has no solution. It simplifies to ...
2/(x-1) + 1/5 = 2/(x -1)
1/5 = 0 . . . . . subtract 2/(x-1) from both sides
There is no value of x that will make this equation true.
_____
<em>Alternative interpretation</em>
The way your equation is written, it must be interpreted according to the order of operations to be ...
(10/5)x -5 +1/5 = (2/x) -1 . . . . x=0 makes the denominator zero
2x -3.8 = 2/x
2x^2 -3.8x = 2 . . . . multiply by x
2(x^2 -1.9x +.95^2) = 2 +2(0.95^2)
(x -0.95)^2 = 1.9025
x = 0.95 ± √1.9025 ≈ {-0.4293, 2.3293}
The area of the triangle PQR is 108 square units
<h3>How to determine the area of the triangle?</h3>
The given parameters are:
- Height, h = 12 units
- Base, b = 18 units
The area is then calculated using:
Area = 0.5 * base * height
So, we have:
Area = 0.5 * 18 * 12
Evaluate
Area = 108
Hence, the area of the triangle PQR is 108 square units
Read more about areas at:
brainly.com/question/24487155
#SPJ2
Answer:
128 inches
Step-by-step explanation:
Answer:
see the explanation
Step-by-step explanation:
we know that
A mixed number is equal to sum a integer plus a fraction less than 1. The result is a fraction where the numerator will be always greater than the denominator (This fraction is called an improper fraction)
Example
----> a mixed number
a is a integer
b/c < 1
so

Adds the integer plus the fraction
---> an improper fraction

<h3><u>Given </u><u>:</u><u>-</u></h3>
- We have given the coordinates of the triangle PQR that is P(-4,6) , Q(6,1) and R(2,9)
<h3><u>To</u><u> </u><u>Find </u><u>:</u><u>-</u></h3>
- <u>We </u><u>have </u><u>to </u><u>calculate </u><u>the </u><u>length </u><u>of </u><u>the </u><u>sides </u><u>of </u><u>given </u><u>triangle </u><u>and </u><u>also </u><u>we </u><u>have </u><u>to </u><u>determine </u><u>whether </u><u>it </u><u>is </u><u>right </u><u>angled </u><u>triangle </u><u>or </u><u>not </u>
<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u></h3>
<u>Here</u><u>, </u><u> </u><u>we </u><u>have </u>
- Coordinates of P =( x1 = -4 , y1 = 6)
- Coordinates of Q = ( x2 = 6 , y2 = 1 )
- Coordinates of R = ( x3 = 2 , y3 = 9 )
<u>By </u><u>using </u><u>distance </u><u>formula </u>

<u>Subsitute </u><u>the </u><u>required </u><u>values </u><u>in </u><u>the </u><u>above </u><u>formula </u><u>:</u><u>-</u>
Length of side PQ






Length of QR





Length of RP





<h3><u>Now</u><u>, </u></h3>
We have to determine whether the triangle PQR is right angled triangle
<h3>Therefore, </h3>
<u>By </u><u>using </u><u>Pythagoras </u><u>theorem </u><u>:</u><u>-</u>
- Pythagoras theorem states that the sum of squares of two sides that is sum of squares of 2 smaller sides of triangle is equal to the square of hypotenuse that is square of longest side of triangle
<u>That </u><u>is</u><u>, </u>

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>,</u>


<u>From </u><u>above </u><u>we </u><u>can </u><u>conclude </u><u>that</u><u>, </u>
- The triangle PQR is not a right angled triangle because 205 ≠ 45 .