Answer:
cosB = 21/75, tanB = 72/21
Step-by-step explanation:
Here, we can use pythagoras to figure out all sides. 75^2-72^2 = 21^2. So, we have sides with lengths 21, 72, and 75. We are given that sinB = 72/75. The definition of sin is opposite of hypotenuse. So, the opposite of angle B is side CA and the hypotenuse is BA. This allows us to find that BC is the 21 length side. The cos of an angle is adjacent over hypotenuse. In this case, it is BC/BA which is 21/75. similarly, Tan is opposite over adjacent or 72/21. And we are done. Those are the values. TO remember these, use the acronym:
SOH CAH TOA. S refers to sin and OH refers to opposite over hypotenuse. Similarly C is cos, A is adjacent, and H is hypotenuse, and then T is tan, o is opposite and A is adjacent.
Answer:
That's it nothing else?
Step-by-step explanation:
The coefficients of any row of Pascal’s triangle can be calculated using (A) combinations
<h3>How to determine the coefficients?</h3>
A binomial expansion is represented as:

Where:
x >= 0 and x <= n
In the above expression, the coefficient is:

The above represents the xth term of a Pascal triangle and it is a combination expression
Hence, the coefficients of any row of Pascal’s triangle can be calculated using (A) combinations
Read more about combinations at:
brainly.com/question/11732255
#SPJ1
Answer:
B: 0.25 = 1/4
Step-by-step explanation:
Queremos encontrar otra representación del número 0.25
Notar que hay dos decimales luego de la coma, por lo que podemos multiplicar este número y dividir por 100.
0.25 = 0.25*1 = 0.25*(100/100) = (0.25*100)/(100) = 25/100
Ahora tenemos el número escrito como una fracción, la cual debemos simplificar.
25/100
Podemos ver que tanto el numerador como el denominador son multiplos de 5, por lo que podemos dividir ambos por 5:
25/100 = (25/5)/(100/5) = 5/20
Nuevamente, ambos son multiplos de 5, por lo que podemos dividir ambos por 5.
5/20 = (5/5)/(20/5) = 1/4
así tenemos:
0.25 = 25/100 = 5/20 = 1/4
0.25 = 1/4
La opción correcta es B.
It’s undefined because y would equal 0