Answer:
$27
Step-by-step explanation:
Thomas rents a car for his vacation. The mileage include with the rental is 54 miles. For every mile he drives over 54 miles, he needs to pay $1 4/5. If he drives 69 miles, how much extra does he need to pay?
Total mileage included with the rental = 54 miles
Additional cost per mile after 54 miles = $1 4/5
Total miles Thomas drives = 69 miles
Extra miles Thomas drives = 69 miles - 54 miles
= 15 miles
how much extra does he need to pay?
Extra cost Thomas needs to pay = Additional cost per mile after 54 miles * Extra miles Thomas drives
= $1 4/5 * 15 miles
= 9/5 * 15
= (9 * 15) / 5
= 135/5
= 27
Extra cost Thomas needs to pay = $27
The answer is "electors from each state who cast ballots for president and vice president."
Have a great night! :)
Answer:
4
Step-by-step explanation:
set

constrain:

Partial derivatives:

Lagrange multiplier:

![\left[\begin{array}{ccc}1\\1\end{array}\right]=a\left[\begin{array}{ccc}2x\\2y\end{array}\right]+b\left[\begin{array}{ccc}3x^2\\3y^2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C1%5Cend%7Barray%7D%5Cright%5D%3Da%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2x%5C%5C2y%5Cend%7Barray%7D%5Cright%5D%2Bb%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3x%5E2%5C%5C3y%5E2%5Cend%7Barray%7D%5Cright%5D)
4 equations:

By solving:

Second mathod:
Solve for x^2+y^2 = 7, x^3+y^3=10 first:

The maximum is 4
Answer:
a. around 36.36 hours; around 28.57 hours
b. $134.21; $159.38
Step-by-step explanation: