1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
s2008m [1.1K]
3 years ago
9

When the magnetic flux through a single loop of wire increases by , an average current of 40 A is induced in the wire. Assuming

that the wire has a resistance of , (a) over what period of time did the flux increase? (b) If the current had been only 20 A, how long would the flux increase have taken?
Physics
1 answer:
Zielflug [23.3K]3 years ago
7 0

COMPLETE QUESTION:

<em>When the magnetic flux through a single loop of wire increases by </em>30 Tm^2<em> , an average current of 40 A is induced in the wire. Assuming that the wire has a resistance of </em><em>2.5 ohms </em><em>, (a) over what period of time did the flux increase? (b) If the current had been only 20 A, how long would the flux increase have taken?</em>

Answer:

(a). The time period is 0.3s.

(b). The time period is 0.6s.

Explanation:

Faraday's law says that for one loop of wire the emf \varepsilon is

(1). \: \: \varepsilon = \dfrac{\Delta \Phi_B}{\Delta t }

and since from Ohm's law

\varepsilon  = IR,

then equation (1) becomes

(2). \: \:IR= \dfrac{\Delta \Phi_B}{\Delta t }.

(a).

We are told that the change in magnetic flux is \Phi_B = 30Tm^2,  the current induced is I = 40A, and the resistance of the wire is R = 2.5\Omega; therefore, equation (2) gives

(40A)(2.5\Omega)= \dfrac{30Tm^2}{\Delta t },

which we solve for \Delta t to get:

\Delta t = \dfrac{30Tm^2}{(40A)(2.5\Omega)},

\boxed{\Delta t = 0.3s},

which is the period of time over which the magnetic flux increased.

(b).

Now, if the current had been I =20A, then equation (2) would give

(20A)(2.5\Omega)= \dfrac{30Tm^2}{\Delta t },

\Delta t = \dfrac{30Tm^2}{(20A)(2.5\Omega)},

\boxed{\Delta t = 0.6 s\\}

which is a longer time interval than what we got in part a, which is understandable because in part a the rate of change of flux \dfrac{\Delta \Phi_B}{\Delta t} is greater than in part b, and therefore , the current in (a) is greater than in (b).

You might be interested in
Which statement is true about the Big Bang Theory?
zmey [24]
I think it’s A.) it explains why the universe is made up of matter
4 0
3 years ago
Interdependence between plants and animals<br>​
Rama09 [41]

Answer:

plants depend on animals for CO2 (to use during photosynthesis) while animals depend on plants for food (consumation)

Explanation:

5 0
3 years ago
Water waves are caused by wind, which is caused by the sun
11Alexandr11 [23.1K]

The sun emits electromagnetic radiation so I think they are electromagnetic waves.

3 0
3 years ago
In an attempt to reduce the extraordinarily long travel times for voyaging to distant stars, some people have suggested travelin
alexandr402 [8]

Answer:

a) v=0.999124c

b) E=7.566*10^{22}

c) E_a=760 times\ larger

Explanation:

From the question we are told that

Distance to Betelgeuse d_b=430ly

Mass of Rocket M_r=20000

Total Time in years traveled T_d=36years

Total energy used by the United States in the year 2000 E_{2000}=1.0*10^20

Generally the equation of speed of rocket v mathematically given by

v=\frac{2d}{\triangle t}

v=860ly/ \triangle t

where

\triangle t=\frac{\triangle t'}{(\sqrt{1-860/ \triangle t)^2}}

\triangle t=\frac{36}{(\sqrt{1-860/ \triangle t)^2}}

\triangle t=\sqrt{(860)^2+(36)^2}

\triangle t=860.7532

Therefore

v=\frac{860ly}{ 860.7532}

v=0.999124c

b)

Generally the equation of the energy E required to attain prior speed mathematically given by

E=\frac{1}{\sqrt{1-(v/c)^2} }-1(20000kg)(3*10^8m/s)^2

E=7.566*10^{22}

c)Generally the equation of the energy E_a required to accelerate the rocket mathematically given by

E_a=\frac{E}{E_{2000}}

E_a=\frac{7.566*10^{22}}{1.0*10^{20}}

E_a=760 times\ larger

8 0
3 years ago
What is the minimum runway length that will serve? hint: you can solve this problem using ratios without having any additional i
ehidna [41]

There are many factors that determine if an aircraft can operate from a given airport. Of course the availability of certain services, such as fuel, access to air stairs and maintenance are all necessary. But before considering anything else, one must determine if the plane can physically land at an airport, and equally as important, take off.

What is the minimum runway length that will serve?

Looking at aerial views of runways can lead some to the assumption that they are all uniform, big and appropriate for any plane to land. This couldn’t be further from the truth.

A given aircraft type has its own individual set of requirements in regards to these dimensions. The classic 150’ wide runway that can handle a wide-body plane for a large group charter flight isn’t a guarantee at every airport. Knowing the width of available runways is important for a variety of reasons including runway illusion and crosswind condition.

Runways also have different approach categories based on width, and have universal threshold markings that indicate the actual width.

To learn more about runway

brainly.com/question/11553726

#SPJ4

6 0
2 years ago
Other questions:
  • Which type of machine is a hand drill ? mechanical machine,compound machine, simple machine , or complex machine ?
    14·2 answers
  • Why car speed is not considered as car velocity?​
    12·1 answer
  • What is the energy equivalent of an object with a mass of 1.83 kg?
    7·2 answers
  • If the pressure acting on a given sample of an ideal gas at constant temperature is tripled, what happens to the volume of the g
    5·1 answer
  • A 65-cm segment of conducting wire carries a current of 0.35
    12·2 answers
  • Arrange the steps in order to describe what happens to a gas when it cools
    6·1 answer
  • How do spectroscopes help with studying of distance stars?
    12·1 answer
  • Check the dimensional consistencies of s =vot+1/2at2​
    10·1 answer
  • Conveyor belts are often used to move packages around warehouses. The conveyor shown below moves packages at a steady 4.0 m/s. A
    11·1 answer
  • 9. Electron travelling though two horizontal plates
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!