Answer:
1. x = -4y ---> y = (-1/4)x
slope = -1/4. y-intercept = (0,0)
2. y = -2x + 4
3. y = (1/3)x - 1
Step-by-step explanation:
1. Re-write your equation so that x is on the right and y is on the left:
x = -4y ---> y = (-1/4)x
slope = -1/4. y-intercept = (0,0)
2. y-intercept = (0,4) ----> P1
x-intercrpt = (2,0) ----> P2
slope m = (y2 - y1) / (x2 - x1)
= (0 - 4)/(2 - 0)
= -2
therefore, y - y1 = mx - x1 ---> y - 4 = -2x
or y = -2x + 4
3. y-intercept = (0,-1)
x-intercept = (3,0)
m = (0 - (-1)) / (3 -0) = 1/3
y - (-1) = (1/3)x - 0 ---> y = (1/3)x - 1
Answer:
35
Step-by-step explanation:
Multiply 40 by 0.125 (12.5%) and you get 5
Subtract 5 from 40
35
Transform <em>Y</em> to <em>Z</em>, which is distributed N(0, 1), using the formula
<em>Y</em> = <em>µ</em> + <em>σZ</em>
where <em>µ</em> = -16 and <em>σ</em> = 1.21.
Pr[-15.043 < <em>Y</em> ≤ <em>k</em>] = 0.1546
Pr[(-15.043 + 16)/1.21 < (<em>Y</em> + 16)/1.21 ≤ (<em>k</em> + 16)/1.21] = 0.1546
Pr[0.791 < <em>Z</em> ≤ (<em>k</em> + 16)/1.21] ≈ 0.1546
Pr[<em>Z</em> ≤ (<em>k</em> + 16)/1.21] - Pr[<em>Z</em> < 0.791] = 0.1546
Pr[<em>Z</em> ≤ (<em>k</em> + 16)/1.21] = 0.1546 + Pr[<em>Z</em> < 0.791]
Pr[<em>Z</em> ≤ (<em>k</em> + 16)/1.21] ≈ 0.1546 + 0.786
Pr[<em>Z</em> ≤ (<em>k</em> + 16)/1.21] ≈ 0.940
Take the inverse CDF of both sides (<em>Φ(x)</em> denotes the CDF itself):
(<em>k</em> + 16)/1.21 ≈ <em>Φ⁻¹</em> (0.940) ≈ 1.556
Solve for <em>k</em> :
<em>k</em> + 16 = 1.21 • 1.556
<em>k</em> ≈ -14.118
Answer:
2
Step-by-step explanation: 2+5=7