Answer: G and F are mutually exclusive because they cannot occur together
Step-by-step explanation:
According to the definition of mutually exclusive events,
The events which can not occur together and probability of them occurring together is 0 are known as mutually exclusive events.
The first statement gives an implication that if one happens then other happens meaning they could both still happen so it is not true.
The second statement contradict the question about being mutually exclusive events.
The third statement also is a implication that if one event occurs then other does or does not occur.
The last statement is correct one that conforms with the question and obeys the definition of mutually exclusive events.
Answer:
Step-by-step explanation:
Answer:
25.133 units
Step-by-step explanation:
Since the density ρ = r, our mass is
m = ∫∫∫r³sinθdΦdrdθ. We integrate from θ = 0 to π (since it is a hemisphere), Φ = 0 to 2π and r = 0 to 2 and the maximum values of r = 2 in those directions. So
m =∫∫[∫r³sinθdΦ]drdθ
m = ∫[∫2πr³sinθdθ]dr ∫dФ = 2π
m = ∫2πr³∫sinθdθ]dr
m = 2π∫r³dr ∫sinθdθ = 1
m = 2π × 4 ∫r³dr = 4
m = 8π units
m = 25.133 units
Answer is a.
Due to BIDMAS/BODMAS
anything that is first, in this case division, goes into brackets.
6 divided by 3 would go into brackets making you solve that first then u would subtract your answer by 12 making your answer 4
Answer is a.
a.
Answer:
Good for Megan but what’s the question?
Step-by-step explanation: