Answer:
1.7 × 10⁻⁴
Step-by-step explanation:
The question relates to a two sample z-test for the comparison between the means of the two samples
The null hypothesis is H₀: μ₁ ≤ μ₂
The alternative hypothesis is Hₐ: μ₁ > μ₂

Where;
= 13.5
= 12
σ₁ = 2.5
σ₂ = 1.5
We set our α level at 0.05
Therefore, our critical z = ± 1.96
For n₁ = n₂ = 23, we have;

We reject the null hypothesis at α = 0.05, as our z-value, 3.5969 is larger than the critical z, 1.96 or mathematically, since 3.5969 > 1.96
Therefore, there is enough statistical evidence to suggest that Alyse time is larger than Jocelyn in a 1 mile race on a randomly select day and the probability that Alyse has a larger time than Jocelyn is 0.99983
Therefore;
The probability that Alyse has a smaller time than Jocelyn is 1 - 0.99983 = 0.00017 = 1.7 × 10⁻⁴.
Answer:
x= 20 x =-5
Step-by-step explanation:
x^2 – 15x – 100 = 0.
What two numbers multiply to -100 and add to -15
-20 * 5 = -100
-20 +5 = -15
(x-20) (x+5) =0
Using the zero product property
x-20 =0 x+5 = 0
x= 20 x =-5
Answer:
Step-by-step explanation:
She must write an email to the new employees explaining how to access documents that need editing and what to do with new versions of the documents.
The answer to the problem is B.
<span>3down votefavorite1Find minimum and maximum value of function <span>f(x,y)=3x+4y+|x−y|</span> on circle<span>{(x,y):<span>x2</span>+<span>y2</span>=1}</span>I used polar coordinate system. So I have <span>x=cost</span> and <span>y=sint</span> where <span>t∈[0,2π)</span>.Then i exploited definition of absolute function and i got:<span>h(t)=<span>{<span><span>4cost+3sintt∈[0,<span>π4</span>]∪[<span>54</span>π,2π)</span><span>2cost+5sintt∈(<span>π4</span>,<span>54</span>π)</span></span></span></span>Hence i received following critical points (earlier i computed first derivative):<span>cost=±<span>45</span>∨cost=±<span>2<span>√29</span></span></span>Then i computed second derivative and after all i received that in <span>(<span>2<span>√29</span></span>,<span>5<span>√29</span></span>)</span> is maximum equal <span>√29</span> and in <span>(−<span>45</span>,−<span>35</span>)</span> is minimum equal <span>−<span>235</span></span><span>
</span></span>