Answer: Yes,
is a strong acid.
acid =
, conjugate base =
, base =
, conjugate acid = 
Explanation:
According to the Bronsted-Lowry conjugate acid-base theory, an acid is defined as a substance which looses donates protons and thus forming conjugate base and a base is defined as a substance which accepts protons and thus forming conjugate acid.
Yes
is a strong acid as it completely dissociates in water to give
ions.

For the given chemical equation:

Here,
is loosing a proton, thus it is considered as an acid and after losing a proton, it forms
which is a conjugate base.
And,
is gaining a proton, thus it is considered as a base and after gaining a proton, it forms
which is a conjugate acid.
Thus acid =
conjugate base =
base = 
conjugate acid =
.
Answer:
The correct answer is: Ka= 5.0 x 10⁻⁶
Explanation:
The ionization of a weak monoprotic acid HA is given by the following equilibrium: HA ⇄ H⁺ + A⁻. At the beginning (t= 0) we have 0.200 M of HA. Then, a certain amount (x) is dissociated into H⁺ and A⁻, as is detailed in the following table:
HA ⇄ H⁺ + A⁻
t= 0 0.200 M 0 0
t -x x x
t= eq 0.200M -x x x
At equilibrium, we have the following ionization constant expression (Ka):
Ka= ![\frac{ [H^{+}] [A^{-} ]}{ [HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%20%5BH%5E%7B%2B%7D%5D%20%20%5BA%5E%7B-%7D%20%5D%7D%7B%20%5BHA%5D%7D)
Ka= 
Ka= 
From the definition of pH, we know that:
pH= - log [H⁺]
In this case, [H⁺]= x, so:
pH= -log x
3.0= -log x
⇒x = 10⁻³
We introduce the value of x (10⁻³) in the previous expression and then we can calculate the ionization constant Ka as follows:
Ka=
=
= 5.025 x 10⁻⁶= 5.0 x 10⁻⁶
Weathering of the rock and sedimentation are decomposition processes. Through time, the minerals in the rocks soften due to pressure and heat. So, they crumble down and reduce in terms of size. Once they do, they become sand or part of the soil. So, the answer is A.
Answer:
it is easier for them to have an octet of electrons(8e)
Each ion will: obtain the noble gas structure, each atom has high ionization energy
Explanation:
.