Answer:
See explanation and image attached
Explanation:
A bond line structure refers to any structure of a covalent molecule wherein the covalent bonds present in the molecule are represented with a single line for each level of bond order.
The bond-line structure of CH3CH2O(CH2)2CH(CH3)2 has been shown in the image attached. We know that oxygen has a lone pair of electrons and this has been clearly shown also in the image attached.
The law of conservation of mass states that matter cannot be created nor destroyed the answer would be D. It remains the same
Anesthetic in dentistry consists of a mixture of dinitrogen oxide (N₂O) and oxygen gas (O₂), which is administered through an inhaler over the nose. Total pressure of the mixture (
) is sum of partial pressure of N₂O (
) and partial pressure of O₂, (
).

=370 mmHg
So,
= (740-370) mmHg= 370 mmHg=370 torr
Hence, partial pressure of N₂O is 370 torr.
As, 1mmHg= 1 torr.
We can find the mass of ammonia using the ideal gas law equation,
PV = nRT
where
P - pressure - 2.15 atm x 101 325 = 2.18 x 10⁵
V - volume - 3.00 x 10⁻³ m³
n - number of moles
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature in kelvin - 15.0 °C + 273 = 288 K
substituting these values in the equation
2.18 x 10⁵ Pa x 3.00 x 10⁻³ m³ = n x 8.314 Jmol⁻¹K⁻¹ x 288 K
n = 0.273 mol
number of moles of NH₃ is 0.273 mol
molar mass of NH₃ - 17.0 g/mol
mass pf ammonia present - 0.273 mol x 17.0 g/mol = 4.64 g
mass of NH₃ present is 4.64 g