"NH4+ <----> NH3 + H+
The constant of this equilibrium is: K = Kw / Kb = 1 x 10^-14 / 1.8 x 10^-5 =5.56 x 10^-10
5.56 x 10^-10 = x^2 / 0.20-x
x = [H+] =1.1 x 10^-5 M
pH = 5.0"
Observe to to gather facts, by paying close attention towards what you are working on.
meanwhile, reference is the act or process on reaching to your conclusion, based on facts you already know .
Answer : (C) Hafnium is the most likely identity of the given substance.
Solution : Given,
Mass of given substance (m) = 46.9 g
Volume of given substance (V) = 3.5 
First, find the Density of given substance.
Formula used :

Now,put all the values in this formula, we get
= 13.4 g/
So, we conclude that the density of given substance (13.4 g/
) is approximately equal to the density of Mercury and Hafnium (13.53 and 13.31 g/
respectively).
According to the question the substance is solid at room temperature but Mercury is liquid at room temperature. So, Mercury is not identical to the given substance.
Another element i.e, Hafnium is the element whose density is approximately equal to the given substance and also solid at room temperature. And we know that the melting point of solid is high.
So, Hafnium is the most likely element which is the identity of the given substance.
Answer:
Here's what I get
Explanation:
A plant extract is a mixture because it contains different substances: acetone or ethanol, chlorophylls A and B, carotene and xanthophylls.
It is homogeneous because it is a solution. There is only one phase: the liquid phase. You cannot see the pigments as separate phases.
You can separate the pigments by paper, thin layer, or column chromatography.
Many schools use paper chromatography, because paper is cheap.
As the mixture of pigments follows the solvent up the paper, they separate into different coloured bands according to their attractive forces to the cellulose in the paper.
The chlorophylls are strongly attracted to the paper, so they don't travel very far.
The nonpolar carotene molecules have little attraction to the polar cellulose, so they are carried along by the solvent front.
Carbon discovered in Prehistoric times.. Discoverer will probably never be known