1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Delvig [45]
3 years ago
11

Can classical physics be used to accurately describe a satellite moving at a speed of 7500 m/s? explain why or why not.

Physics
1 answer:
gogolik [260]3 years ago
3 0

The classical physics works on the Newton's laws of motion. It is applicable on heavenly bodies which are governed by the gravitational force. On the other hand, Quantum Physics is applicable for very low mass and sized bodies like electron, protons etc. The classical physics would accurately describe the motion of satellite moving with speed 7500 m/s using the following formula:

r=\frac {GM}{v^{2}}

where G is the gravitational constant, M is the mass of the planet and v is the orbital speed. Then radius of the orbit can be described by this formula.

You might be interested in
HELP PLEEAAAASSSEEEEEEE What is the definition of net force?
aleksley [76]

Answer:

the sum of all force being applied to an object.

Explanation:

8 0
3 years ago
Volume is a measurement of the height of the wave known as what? <br><br><br> this is science
Cerrena [4.2K]
I’m gonna have to say “Ocean waves” as the answer
6 0
3 years ago
Read 2 more answers
An object weighs 63.8 N in air. When it is suspended from a force scale and completely immersed in water the scale reads 16.8 N.
I am Lyosha [343]

Answer:

The density of this object is approximately 1.36\; {\rm kg \cdot L^{-1}}.

The density of the oil in this question is approximately 0.600\; {\rm kg \cdot L^{-1}}.

(Assumption: the gravitational field strength is g =9.806\; {\rm N \cdot kg^{-1}})

Explanation:

When the gravitational field strength is g, the weight (\text{weight}) of an object of mass m would be m\, g.

Conversely, if the weight of an object is (\text{weight}) in a gravitational field of strength g, the mass m of that object would be m = (\text{weight}) / g.

Assuming that g =9.806\; {\rm N \cdot kg^{-1}}. The mass of this 63.8\; {\rm N}-object would be:

\begin{aligned} \text{mass} &= \frac{\text{weight}}{g} \\ &= \frac{63.8\; {\rm N}}{9.806\; {\rm N \cdot kg^{-1}}} \\ &\approx 6.506\; {\rm kg}\end{aligned}.

When an object is immersed in a liquid, the buoyancy force on that object would be equal to the weight of the liquid that was displaced. For instance, since the object in this question was fully immersed in water, the volume of water displaced would be equal to the volume of this object.

When this object was suspended in water, the buoyancy force on this object was (63.8\; {\rm N} - 16.8\; {\rm N}) = 47.0\; {\rm N}. Hence, the weight of water that this object displaced would be 47.0 \; {\rm N}.

The mass of water displaced would be:

\begin{aligned}\text{mass} &= \frac{\text{weight}}{g} \\ &= \frac{47.0\: {\rm N}}{9.806\; {\rm N \cdot kg^{-1}}} \\ &\approx 4.793\; {\rm kg}\end{aligned}.

The volume of that much water (which this object had displaced) would be:

\begin{aligned}\text{volume} &= \frac{\text{mass}}{\text{density}} \\ &\approx \frac{4.793\; {\rm kg}}{1.00\; {\rm kg \cdot L^{-1}}} \\ &\approx 4.793\; {\rm L}\end{aligned}.

Since this object was fully immersed in water, the volume of this object would be equal to the volume of water displaced. Hence, the volume of this object is approximately 4.793\; {\rm L}.

The mass of this object is 6.50\; {\rm kg}. Hence, the density of this object would be:

\begin{aligned} \text{density} &= \frac{\text{mass}}{\text{volume}} \\ &\approx \frac{6.506\; {\rm kg}}{4.793\; {\rm L}} \\ &\approx 1.36\; {\rm kg \cdot L^{-1}} \end{aligned}.

(Rounded to \text{$3$ sig. fig.})

Similarly, since this object was fully immersed in oil, the volume of oil displaced would be equal to the volume of this object: approximately 4.793\; {\rm L}.

The weight of oil displaced would be equal to the magnitude of the buoyancy force: 63.8\; {\rm N} - 35.6\; {\rm N} = 28.2\; {\rm N}.

The mass of that much oil would be:

\begin{aligned}\text{mass} &= \frac{\text{weight}}{g} \\ &= \frac{28.2\: {\rm N}}{9.806\; {\rm N \cdot kg^{-1}}} \\ &\approx 2.876\; {\rm kg}\end{aligned}.

Hence, the density of the oil in this question would be:

\begin{aligned} \text{density} &= \frac{\text{mass}}{\text{volume}} \\ &\approx \frac{2.876\; {\rm kg}}{4.793\; {\rm L}} \\ &\approx 0.600\; {\rm kg \cdot L^{-1}} \end{aligned}.

(Rounded to \text{$3$ sig. fig.})

7 0
2 years ago
Any transparent material that allows light of only certain color to pass through is called a filter . true or false
Dahasolnce [82]

it is TRUE hope this helps

7 0
3 years ago
Friction provides the force needed for a car to travel around a flat, circular race track. What is the maximum speed at which a
blagie [28]

Answer:

The maximum speed at which the car can safety travel around the track is 18.6m/s.

Explanation:

Since the car is in circular motion, there has to be a centripetal force F_c. In this case, the only force that applies for that is the static frictional force f_sbetween the tires and the track. Then, we can write that:

f_s=F_c

And since f_s\leq \mu N and F_c=\frac{mv^{2}}{r}, we have:

\mu N\geq \frac{mv^{2}}{r}

Now, if we write the vertical equation of motion of the car (in which there are only the weight and the normal force), we obtain:

N-mg=0\\\\\\implies N=mg

Substituting this expression for N and solving for v, we get:

\mu mg\geq \frac{mv^{2}}{r}\\\\v\leq \sqrt{\mu gr}

Finally, plugging in the given values for the coefficient of friction and the radius of the track, we have:

v\leq \sqrt{(0.42)(9.81m/s^{2})(84.0m)}\\\\v\leq 18.6m/s

It means that in its maximum value, the speed of the car is equal to 18.6m/s.

7 0
3 years ago
Read 2 more answers
Other questions:
  • The maximum distance from the Earth to the Sun (at aphelion) is 1.521 1011 m, and the distance of closest approach (at perihelio
    6·1 answer
  • List 3 examples in which friction helps us or makes things easier in our daily life. Explain the effect of friction for each.
    14·2 answers
  • can someone please answer my last question I posted? On my last post? My hw is due tomorrow and I’m confused.
    8·1 answer
  • 2. The viscosity of a fluid is to be measured by an viscometer constructed of two 75–cm–long concentric cylinders. The outer dia
    7·1 answer
  • Which of the following is NOT correct? . . a A changing electric field can produce a changing magnetic field . . b A steady magn
    7·2 answers
  • Please help ASAP. There are 3 question it would be a big help if you can answer any.
    11·2 answers
  • Even though you are getting closer to the sun as you ascend into the toposphere, why does the temperature drop?
    7·2 answers
  • The speed of a particle moving in a circle 2.0 m in radius increases at the constant rate of 4.4 m/s2. At an instant when the ma
    15·1 answer
  • Calculate the energy, wavelength, and frequency of the emitted photon when an electron moves from an energy level of -3.40 eV to
    5·1 answer
  • Answer me fast. Find velocity in Acceleration Time Graph.​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!