No, momentum is conserved so:
momentum before=momentum after
it is C. 100 kg m/s
Answer:
C. a dense region of positive charge existed somewhere in the atom.
Explanation:
Physicist Ernest Rutherford created the gold foil experiment in which he shot a beam of alpha particles at a sheet of gold foil, which then sent a few of the particles flying after they were deflected. Based on the information gathered after completing this experiment, Rutherford concluded that a dense region of positive charge existed somewhere in the atom.
I hope this answered your question. If you have any more questions feel free to ask away at Brainly.
Erosion, formation of sinkholes, loss of biodiversity, and contamination of soil, groundwater and surface water by chemicals from mining processes.
Answer: the average speed of the rat from the information given above is 0.7m/s
Explanation:
position is given as
x(t) = pt² + qt
finding the diffencial of x(t) with respect to t, we have
d(x(t))/dt = 2pt + q
we substitute the p = 0.36m/s² and q= -1.10 m/s
d(x(t))/dt = 2(0.36)t + (-1.10)
so, at t= 1s
d(x(t))/dt = 2*(0.36)*1 - 1.1 = 0.72 - 1.1 = -0.38m/s
at t= 4s
d(x(t))/dt = 2*(0.36)*4 - 1.10 = 2.88 - 1.10 = 1.78 m/s
To find the average speed,
average speed = (V1 + V2)/ 2
average speed = (1.78 + (-0.38))/2 = 0.7m/s
To find the change in centripetal acceleration, you should first look for the centripetal acceleration at the top of the hill and at the bottom of the hill.
The formula for centripetal acceleration is:
Centripetal Acceleration = v squared divided by r
where:
v = velocity, m/s
r= radium, m
assuming the velocity does not change:
at the top of the hill:
centripetal acceleration = (4.5 m/s^2) divided by 0.25 m
= 81 m/s^2
at the bottom of the hill:
centripetal acceleration = (4.5 m/s^2) divided by 1.25 m
= 16.2 m/s^2
to find the change in centripetal acceleration, take the difference of the two.
change in centripetal acceleration = centripetal acceleration at the top of the hill - centripetal acceleration at the bottom of the hill
= 81 m/s^2 - 16.2 m/s^2
= 64.8 m/s^2 or 65 m/s^2