Answer:
The distance between the two spheres is 914.41 X 10³ m
Explanation:
Given;
4 X 10¹³ electrons, and its equivalent in coulomb's is calculated as follows;
1 e = 1.602 X 10⁻¹⁹ C
4 X 10¹³ e = 4 X 10¹³ X 1.602 X 10⁻¹⁹ C = 6.408 X 10⁻⁶ C
V = Ed
where;
V is the electrical potential energy between two spheres, J
E is the electric field potential between the two spheres N/C
d is the distance between two charged bodies, m

where;
K is coulomb's constant = 8.99 X 10⁹ Nm²/C²
d = (8.99 X 10⁹ X 6.408 X 10⁻⁶)/0.063
d = 914.41 X 10³ m
Therefore, the distance between the two spheres is 914.41 X 10³ m
Answer:
your right answer is true
hope it helps you
Answer:
Explanation:
The condition for translation equilibrium is that is that the net force acting on the body must be zero.
The sum all the external forces acting on the body in horizontal as well as vertical direction must be zero.
∑Fₓ=0 and ∑Fy=0
now if the above two condition are satisfied the rigid body is said to be in translational equilibrium.
God bless... hope this help to clear your doubt.
1). Vector
2). Scalar
3). Magnitude
4). Components
5). Free body diagram
Answer:
The hydraulic press allows the applied force (F1) to be converted into a higher force (F2) along some path as many times as the surface of the driven hydraulic cylinder (A2) is larger than the surface of the driving hydraulic cylinder (A1). The hydraulic press works on the basis of Pascal's law, which reads: External pressure is transmitted through the fluids equally in all directions.