Since you didn't provide how tall the Monument was, I took the liberty to find it and it is 555 feet tall. So to convert to meters we must divide 555 by 3.28 or multiply it by 0.3048 (this is the method I used).
555 x 0.3048 = 169.164 meters
Answer:
In a velocity selector, there are two forces namely;
» Electric field Intensity
» Magnetic field density
<u>Relationship</u><u>:</u>

E is the electric field intensity
B is the magnetic flux density
Below are the choices that can be found elsewhere:
A. (4.9 × 10-14 newtons) · tan(30°)
<span>B. (4.9 × 10-14 newtons) · sin(30°) </span>
<span>C. (4.9 × 10-14 newtons) · cos(30°) </span>
<span>D. (4.9 × 10-14 newtons) · arctan(30°) </span>
<span>E. (4.9 × 10-14 newtons) · arccos(30°)
</span>
<span>Force is proportional to the angle made by the velocity with respect to the magnetic field. It is maximum when velocity is perpendicular to the magnetic field and minimum when the velocity is parallel to the magnetic field. It is proportional to sin of the angle. In this problem it will be proportional to sin(30)</span>
Answer:
3.675 m
Explanation:

X-direction | Y-direction
| 
|
| 
Hope it helps
Force = (mass) x (acceleration)
Force = (18 kg) x (3 m/s²) = 54 newtons
As long as you continue pushing the cart with 54 newtons of force,
it will accelerate at 3 m/s².
At the instant you release it, or keep your hands on it but stop pushing,
it will stop accelerating. It'll continue forward at the speed it had when
the 54 newtons of force stopped.