Answer:

Explanation:
The period of a simple pendulum is given by:

where
L is the length of the pendulum
g is the acceleration of gravity
From this equation we can write

Taking the square of this equation, we get:

So we see that
is proportional to L and inversely proportional to g. So, we can write:

So the only correct option is

<h2>Answer: Neptune
</h2>
The dwarf planet Pluton, <u>has the most eccentric orbit</u> (more elliptical and elongated) of all the planets, and as a consequence its orbit is "intersected" by the orbit of Neptune.
However, <u>despite this intersection, there is no collision risk between these two bodies</u>, since the orbit of Pluto is located in an orbital plane different from that of the other planets and therefore different from that of Neptune, its nearest neighbor. In addition, the orbit of Pluton is inclined
on the the ecliptic plane (plane where the other planets move around the Sun).
It’s d energy because it’s referring to power changing because the power unit is (J/s) joule per second known as watt which is the same as implieing power
<h2>Answer: 12.24m/s</h2>
According to <u>kinematics</u> this situation is described as a uniformly accelerated rectilinear motion. This means the acceleration while the car is in motion is constant.
Now, among the equations related to this type of motion we have the following that relates the velocity with the acceleration and the distance traveled:
(1)
Where:
is the Final Velocity of the car. We are told "the car comes to a stop after travelling", this means it is 0.
is the Initial Velocity, the value we want to find
is the constant acceleration of the car (the negative sign means the car is decelerating)
is the distance traveled by the car
Now, let's substitute the known values in equation (1) and find
:
(2)
(3)
Multiplying by -1 on both sides of the equation:
(4)
(5)
Finally:
>>>This is the Initial velocity of the car