At the lowest point on the Ferris wheel, there are two forces acting on the child: their weight of 430 N, and an upward centripetal/normal force with magnitude n; then the net force on the child is
∑ F = ma
n - 430 N = (430 N)/g • a
where m is the child's mass and a is their centripetal acceleration. The child has a linear speed of 3.5 m/s at any point along the path of the wheel whose radius is 17 m, so the centripetal acceleration is
a = (3.5 m/s)² / (17 m) ≈ 0.72 m/s²
and so
n = 430 N + (430 N)/g (0.72 m/s²) ≈ 460 N
<span>The answer is: ultraviolet
The energy (E) of a photon is directly proportional to its frequency f, by Planck's
formula: E = hf, where h is Planck's constant (6.625 * 10**-34 joule-second).
The frequency is inversely proportional to the wavelength w by: f = c/w, where
c is the speed of light, 3.0 * 10**8 meters per second.
Combine these formulas and we see that the energy is inversely proportional to
the wavelength by: E = hc/w
If the energy is inversely proportional to the wavelength, a photon with twice the
energy has half the wavelength of our 442-nm. photon in this example.
So its wavelength is 221 nm. which is in the ultraviolet range.</span>
Yes, Sliding friction opposes the movement of the book, slowing it down.sliding That's the 'kinetic' kind.. According to Newton's second law, F=ma. That is, the bear's acceleration should be proportional to the total force acting on the bear. As the bear's velocity is constant, its acceleration is zero. Therefore, the total Force acting on the bear is zero. Thus, the friction has to be equal in magnitude and opposite in direction to the bear's weight. As W=mg, we get that its weight is <span>9.8*400=3,920 Newton. Thus, the friction acting on the bear is 3,920 Newton</span>
The total work done by the electric field on the charge is given by the scalar product between the electric force acting on the charge and the displacement of the charge:

where the force is F=qE, d=0.556 and

. Using the value of q and E given by the problem, we find