1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ilia_Sergeevich [38]
3 years ago
12

Help plsssssssssssssssssssssssss​

Mathematics
1 answer:
r-ruslan [8.4K]3 years ago
6 0

Answer:

OPTION - 3: -m²n³$ \sqrt{n} $

Step-by-step explanation:

We know that $ \sqrt{ab} = \sqrt{a}\sqrt{{b} $

Also, $ \sqrt{m^{2}} = m $

Now we are to simplify: $ - \sqrt{m^4n^7} $

$ \implies - \sqrt{m^4}\sqrt{n^7} $

$ \implies - \sqrt{(m^2)^2}\sqrt{n^6.n} $

$ \implies-  m^2 \sqrt{(n^3)^2.n} $

$ \implies - m^2 n^3\sqrt{n}

∴                       $ \sqrt{m^4n^7} =  -m^2n^3\sqrt{n} $

You might be interested in
Find and simplify the quotient 2/3 divided by 8/9
Anuta_ua [19.1K]
The answer is 3/4 and it was already simplified
8 0
3 years ago
Find an equation for the nth term of the arithmetic sequence. a18 = 97, a20 = 281
Ipatiy [6.2K]
Hope this helped the answer is in purple

5 0
3 years ago
PLS help!!
prohojiy [21]

Answer:

is the root of 5 not equal why

8 0
3 years ago
The Wall Street Journal Corporate Perceptions Study 2011 surveyed readers and asked how each rated the Quality of Management and
natali 33 [55]

Answer:

a)\chi^2 = \frac{(40-35)^2}{35}+\frac{(35-40)^2}{40}+\frac{(25-25)^2}{25}+\frac{(25-24.5)^2}{24.5}+\frac{(35-28)^2}{28}+\frac{(25-17.5)^2}{17.5}+\frac{(5-10.5)^2}{10.5}+\frac{(10-12)^2}{12}+\frac{(15-7.5)^2}{7.5} =17.03

p_v = P(\chi^2_{4} >17.03)=0.0019

And we can find the p value using the following excel code:

"=1-CHISQ.DIST(17.03,4,TRUE)"

Since the p value is lower than the significance level we can reject the null hypothesis at 5% of significance, and we can conclude that we have association or dependence between the two variables.

b)

P(E|Ex)= P(EΛEx )/ P(Ex) = (40/215)/ (70/215)= 40/70=0.5714

P(E|Gx)= P(EΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(E|Fx)= P(EΛFx )/ P(Fx) = (25/215)/ (50/215)= 25/50=0.5

P(G|Ex)= P(GΛEx )/ P(Ex) = (25/215)/ (70/215)= 25/70=0.357

P(G|Gx)= P(GΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(G|Fx)= P(GΛFx )/ P(Fx) = (10/215)/ (50/215)= 10/50=0.2

P(F|Ex)= P(FΛEx )/ P(Ex) = (5/215)/ (70/215)= 5/70=0.0714

P(F|Gx)= P(FΛGx )/ P(Gx) = (10/215)/ (80/215)= 10/80=0.125

P(F|Fx)= P(FΛFx )/ P(Fx) = (15/215)/ (50/215)= 15/50=0.3

And that's what we see here almost all the conditional probabilities are higher than 0.2 so then the conclusion of dependence between the two variables makes sense.

Step-by-step explanation:

A chi-square goodness of fit test "determines if a sample data matches a population".

A chi-square test for independence "compares two variables in a contingency table to see if they are related. In a more general sense, it tests to see whether distributions of categorical variables differ from each another".

Assume the following dataset:

Quality management        Excellent      Good     Fair    Total

Excellent                                40                35         25       100

Good                                      25                35         10         70

Fair                                         5                   10          15        30

Total                                       70                 80         50       200

Part a

We need to conduct a chi square test in order to check the following hypothesis:

H0: There is independence between the two categorical variables

H1: There is association between the two categorical variables

The level of significance assumed for this case is \alpha=0.05

The statistic to check the hypothesis is given by:

\chi^2 = \sum_{i=1}^n \frac{(O_i -E_i)^2}{E_i}

The table given represent the observed values, we just need to calculate the expected values with the following formula E_i = \frac{total col * total row}{grand total}

And the calculations are given by:

E_{1} =\frac{70*100}{200}=35

E_{2} =\frac{80*100}{200}=40

E_{3} =\frac{50*100}{200}=25

E_{4} =\frac{70*70}{200}=24.5

E_{5} =\frac{80*70}{200}=28

E_{6} =\frac{50*70}{200}=17.5

E_{7} =\frac{70*30}{200}=10.5

E_{8} =\frac{80*30}{200}=12

E_{9} =\frac{50*30}{200}=7.5

And the expected values are given by:

Quality management        Excellent      Good     Fair       Total

Excellent                                35              40          25         100

Good                                      24.5           28          17.5        85

Fair                                         10.5            12           7.5         30

Total                                       70                 80         65        215

And now we can calculate the statistic:

\chi^2 = \frac{(40-35)^2}{35}+\frac{(35-40)^2}{40}+\frac{(25-25)^2}{25}+\frac{(25-24.5)^2}{24.5}+\frac{(35-28)^2}{28}+\frac{(25-17.5)^2}{17.5}+\frac{(5-10.5)^2}{10.5}+\frac{(10-12)^2}{12}+\frac{(15-7.5)^2}{7.5} =17.03

Now we can calculate the degrees of freedom for the statistic given by:

df=(rows-1)(cols-1)=(3-1)(3-1)=4

And we can calculate the p value given by:

p_v = P(\chi^2_{4} >17.03)=0.0019

And we can find the p value using the following excel code:

"=1-CHISQ.DIST(17.03,4,TRUE)"

Since the p value is lower than the significance level we can reject the null hypothesis at 5% of significance, and we can conclude that we have association or dependence between the two variables.

Part b

We can find the probabilities that Quality of Management and the Reputation of the Company would be the same like this:

Let's define some notation first.

E= Quality Management excellent     Ex=Reputation of company excellent

G= Quality Management good     Gx=Reputation of company good

F= Quality Management fait     Ex=Reputation of company fair

P(EΛ Ex) =40/215=0.186

P(GΛ Gx) =35/215=0.163

P(FΛ Fx) =15/215=0.0697

If we have dependence then the conditional probabilities would be higher values.

P(E|Ex)= P(EΛEx )/ P(Ex) = (40/215)/ (70/215)= 40/70=0.5714

P(E|Gx)= P(EΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(E|Fx)= P(EΛFx )/ P(Fx) = (25/215)/ (50/215)= 25/50=0.5

P(G|Ex)= P(GΛEx )/ P(Ex) = (25/215)/ (70/215)= 25/70=0.357

P(G|Gx)= P(GΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(G|Fx)= P(GΛFx )/ P(Fx) = (10/215)/ (50/215)= 10/50=0.2

P(F|Ex)= P(FΛEx )/ P(Ex) = (5/215)/ (70/215)= 5/70=0.0714

P(F|Gx)= P(FΛGx )/ P(Gx) = (10/215)/ (80/215)= 10/80=0.125

P(F|Fx)= P(FΛFx )/ P(Fx) = (15/215)/ (50/215)= 15/50=0.3

And that's what we see here almost all the conditional probabilities are higher than 0.2 so then the conclusion of dependence between the two variables makes sense.

7 0
3 years ago
Mai says that -8 > -4 . Do you agree with her? Explain or show your reasoning.
Elza [17]

Answer:

No

Step-by-step explanation:

-8 is less than -4. Negative numbers reverse the logic of positive ones: since positive 8 is more than positive 4, negative 8 is less than negative 4.

7 0
3 years ago
Other questions:
  • A mountain climber is standing at the top of Mount Everest. The distance from the summit to the horizon is 210 miles. About how
    15·1 answer
  • To which subsets of the real numbers do the number 1.68 belong to
    15·1 answer
  • What is a common denominator for 2/8 and 3/4 in simplest form?
    7·2 answers
  • 7.3579 E8 in standard form
    7·2 answers
  • Please hurry i need an answer fast i don’t know this one?!!!!??
    14·2 answers
  • Christopher saves $550 every month. Assume that Matthew and Christopher both save money at constant rates. Whose unit rate s hig
    13·2 answers
  • P L E A S E H E L P!!!!!!!!!
    15·1 answer
  • Help. Due in minutes. ​
    10·1 answer
  • Felicity eats 3/4 of a bag of chips. What percent of the chips are left
    5·2 answers
  • Y=2(6+1)+5(3+2)? Solve
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!