1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna71 [15]
2 years ago
6

2x+5y=-55 y=3x+6 What is the solution

Mathematics
2 answers:
zloy xaker [14]2 years ago
6 0

Hey there!!

We have 2 equations.

... 2x+5y=-55 and y=3x+6

Substitution method:

... 2x+5(3x+6)=-55

... 2x+15x+30=-55

... 17x+30=-55

Subtracting 30 on both sides:

... 17x=-55-30

... 17x=-85

Dividing by 17 on both sides:

... x=-85/17

... x = -5

<em>The value of x is -5. </em>

We have:

... 2x+5y=-55

... 2(-5)+5y=-55

... -10+5y=-55

Adding by 10 on both sides:

... 5y=-55+10

... 5y=-45

Dividing by 5 on both sides:

... y=-9

<em>Hence, the value of 'x' is -5 and the value of 'y' is -9. </em>

Hope my answer helps!

Arlecino [84]2 years ago
3 0
Let: eq 1:2x+5y=-55
eq 2:y=3x+6
by substituting eq 2 in eq 1 we get,
2x+5(3x+6)=-55
2x+15x+30+55=0
17x + 85=0
x=-85/17
x=-5
By substituting x value in eq 2,
we have,
y=3(-5)+6=-15+6=-9
You might be interested in
Find the derivative of following function.
Aleks04 [339]

Answer:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \tan^2 x + 5x \big) + \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( 2 \sec^2 x \tan x + 5 \big)}{ \big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)} + \frac{2 \cot x \csc^2 x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2 \big( \sin^2x + 6 \big)} - \frac{2 \cos x \sin x \big( \cos^2 x - 3\sqrt{x}  + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)^2}

General Formulas and Concepts:
<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (cu)' = cu'

Derivative Property [Addition/Subtraction]:
\displaystyle (u + v)' = u' + v'

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:
\displaystyle (uv)' = u'v + uv'

Derivative Rule [Quotient Rule]:
\displaystyle \bigg( \frac{u}{v} \bigg)' = \frac{vu' - uv'}{v^2}

Derivative Rule [Chain Rule]:
\displaystyle [u(v)]' = u'(v)v'

Step-by-step explanation:

*Note:

Since the answering box is <em>way</em> too small for this problem, there will be limited explanation.

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle y = \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \times \frac{\tan^2 x + 5x}{\csc^2 x + 3}

<u>Step 2: Differentiate</u>

We can differentiate this function with the use of the given <em>derivative rules and properties</em>.

Applying Product Rule:

\displaystyle y' = \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' \frac{\tan^2 x + 5x}{\csc^2 x + 3} + \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) '

Differentiating the first portion using Quotient Rule:

\displaystyle \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' = \frac{\big( \cos^2 x - 3\sqrt{x} + 6 \big)' \big( \sin^2 x + 6 \big) - \big( \sin^2 x + 6 \big)' \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2}

Apply Derivative Rules and Properties, namely the Chain Rule:

\displaystyle \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - \big( 2 \sin x \cos x \big) \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2}

Differentiating the second portion using Quotient Rule again:

\displaystyle \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) ' = \frac{\big( \tan^2 x + 5x \big)' \big( \csc^2 x + 3 \big) - \big( \csc^2 x + 3 \big)' \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Apply Derivative Rules and Properties, namely the Chain Rule again:
\displaystyle \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) ' = \frac{\big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) - \big( -2 \csc^2 x \cot x \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Substitute in derivatives:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - \big( 2 \sin x \cos x \big) \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2} \frac{\tan^2 x + 5x}{\csc^2 x + 3} + \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \frac{\big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) - \big( -2 \csc^2 x \cot x \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Simplify:

\displaystyle y' = \frac{\big( \tan^2 x + 5x \big) \bigg[ \big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - 2 \sin x \cos x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \bigg]}{\big( \sin^2 x + 6 \big)^2 \big( \csc^2 x + 3 \big)} + \frac{\big( \cos^2 x - 3\sqrt{x} +6 \big) \bigg[ \big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) + 2 \csc^2 x \cot x \big( \tan^2 x + 5x \big) \bigg] }{\big( \csc^2 x + 3 \big)^2 \big( \sin^2 x + 6 \big)}

We can rewrite the differential by factoring and common mathematical properties to obtain our final answer:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \tan^2 x + 5x \big) + \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( 2 \sec^2 x \tan x + 5 \big)}{ \big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)} + \frac{2 \cot x \csc^2 x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2 \big( \sin^2x + 6 \big)} - \frac{2 \cos x \sin x \big( \cos^2 x - 3\sqrt{x}  + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)^2}

∴ we have found our derivative.

---

Learn more about derivatives: brainly.com/question/26836290

Learn more about calculus: brainly.com/question/23558817

---

Topic: Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

8 0
2 years ago
Read 2 more answers
X^3+2/3x^4-1/2x^2 integral
Irina-Kira [14]

\frac{2 {x}^{5} }{15}  +  \frac{ {x}^{4} }{4}   -   \frac{ {x}^{3} }{6}  + c

simplified form =

\frac{ {x}^{3}(8 {x}^{2}  + 15x - 10) }{60}  + c

5 0
2 years ago
I need help with this
rodikova [14]
You need to expand (4x-7)(x+3), multiplying each term in the first bracket by each term in the second bracket, in order to get 4x^2+5x-21. Hope that helps!
5 0
3 years ago
Read 2 more answers
Why do equivalent ratios form a straight line when<br> graphed? Explain.
irina1246 [14]

Answer:

The y-values of equivalent ratios increase at the same rate as their x-values. The vertical distance between points is constant, and the horizontal distance between points is constant. This forms a straight line.

Step-by-step explanation:

Equivalent proportions (which are, as a result, equal parts) are two proportions that express a similar connection between numbers. We can make comparable proportions by duplicating or separating both the numerator and denominator of a given proportion by a similar number.

Two ratios that have the same value are called equivalent ratios. To find an equivalent ratio, multiply or divide both quantities by the same number. It is the same process as finding equivalent fractions.

8 0
2 years ago
Members of a landscaping company built a retaning Wallet.
algol [13]

Answer:

Is this a question. If so I will change my answer

Step-by-step explanation:

3 0
2 years ago
Other questions:
  • If sin 30º = cos(3x), then x=_
    9·1 answer
  • System A
    12·1 answer
  • The sum of a 3 digit number and a 1 digit number is 223 the product of the numbers is 660 if one number is between 200 and 225 w
    5·1 answer
  • Claudia's father is 7 times as old as Claudia. 20 years from now, Claudia will be 1/2 as old as her father. How old is Claudia's
    6·1 answer
  • I need to know how to simplify the sqrt or 432
    8·2 answers
  • Kate bought 3 used CDs and 1 used DVD at the bookstore. Her friend Joel bought 2 used CDs and 2 used DVDs at the same store. If
    7·1 answer
  • What trinomial is represented by the tiles in the square?​
    8·2 answers
  • Which choices are equivalent to the expression below? Check all that apply.<br>3√6​
    11·2 answers
  • What is the inequality shown
    15·2 answers
  • Whats the solution to this formula?Tan^-1 ( 7 / 420) =
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!