1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iVinArrow [24]
3 years ago
5

I need the answers to this please and thank you:)

Mathematics
1 answer:
Liono4ka [1.6K]3 years ago
6 0

                                                      Q # 1    

Explanation

Given the parabola

 f\left(x\right)=\left(x-3\right)^2-1

Openness

  • It OPENS UP, as 'a=1' is positive.

Finding Vertex

The vertex of an up-down facing parabola of the form

y=ax^2+bx+c\:\mathrm{is}\:x_v=-\frac{b}{2a}

\mathrm{Rewrite}\:y=\left(x-3\right)^2-1\:\mathrm{in\:the\:form}\:y=ax^2+bx+c

y=x^2-6x+8

a=1,\:b=-6,\:c=8

x_v=-\frac{\left(-6\right)}{2\cdot \:1}

x_v=3

Finding y_v

y_v=3^2-6\cdot \:3+8

y_v=-1

So vertex is:

\left(3,\:-1\right)

Horizontal Translation

y=\left(x-3\right)^2 moves the graph RIGHT 3 units.

Vertical Translation

 f\left(x\right)=\left(x-3\right)^2-1 moves the graph DOWN 1 unit.

Stretch or Compress Vertically

As a = 1, so it does not affect the stretchiness or compression.

                                       Q # 2  

Explanation:

f\left(x\right)=-\left(x+1\right)^2-2

Openness

  • It OPENS DOWN, as 'a=-1' is negative.

Vertex

\mathrm{Rewrite}\:y=-\left(x+1\right)^2-2\:\mathrm{in\:the\:form}\:y=ax^2+bx+c

y=-x^2-2x-3

a=-1,\:b=-2,\:c=-3

x_v=-\frac{\left(-2\right)}{2\left(-1\right)}

x_v=-1

\mathrm{Plug\:in}\:\:x_v=-1\:\mathrm{to\:find\:the}\:y_v\:\mathrm{value}

y_v=-2

So vertex is:

\left(-1,\:-2\right)

Horizontal Translation

y=\left(x+1\right)^2 moves the graph LEFT 1 unit.

Vertical Translation

f\left(x\right)=\left(x+1\right)^2-2   moves the graph DOWN 2 unit.

Stretch or Compress Vertically

As a = -1 < 0, so it is either stretched or compressed.

                                          Q # 3  

Explanation:

f\left(x\right)=\frac{1}{3}\left(x-4\right)^2+6

It OPENS UP, as 'a=1/3' is positive.

Vertex

\mathrm{Rewrite}\:y=\frac{1}{3}\left(x-4\right)^2+6\:\mathrm{in\:the\:form}\:y=ax^2+bx+c

y=\frac{1\cdot \:x^2}{3}-\frac{8x}{3}+\frac{34}{3}

a=\frac{1}{3},\:b=-\frac{8}{3},\:c=\frac{34}{3}

x_v=-\frac{\left(-\frac{8}{3}\right)}{2\left(\frac{1}{3}\right)}

x_v=4            

Finding y_v

y_v=\frac{1\cdot \:4^2}{3}-\frac{8\cdot \:4}{3}+\frac{34}{3}

y_v=6            

So vertex is:

\left(4,\:6\right)

Horizontal Translation

f\left(x\right)=\left(x-4\right)^2 moves the graph RIGHT 4 units.

Vertical Translation

f\left(x\right)=}\left(x-4\right)^2+6   moves the graph UP 6 unit.

Stretch or Compress Vertically

As a=\frac{1}{3}, so it the graph is vertically compressed by a factor of 1/3.

Check the attached comparison graphs.

                                             Q # 4

Explanation:

Given the function

 f\left(x\right)=-\left(x+3\right)^2

It OPENS DOWN, as 'a=-1' is negative.

Vertex

The vertex of an up-down facing parabola of the form y=a\left(x-m\right)\left(x-n\right)

is the average of the zeros x_v=\frac{m+n}{2}

y=-\left(x+3\right)^2

a=-1,\:m=-3,\:n=-3

x_v=\frac{m+n}{2}

x_v=\frac{\left(-3\right)+\left(-3\right)}{2}

x_v=-3

Finding y_v

y_v=-\left(-3+3\right)^2

y_v=0

So vertex is:

\left(-3,\:0\right)

Horizontal Translation

y=\left(x+3\right)^2 moves the graph LEFT 3 units.

Vertical Translation

y=\left(x+3\right)^2 does not move the graph vertically.

Stretch or Compress Vertically

As a=-1, so it the graph is either vertically stretched or compressed.

                                             Q # 5  

Explanation:

f\left(x\right)=\left(x+5\right)^2-3

Openness

  • It OPENS UP, as 'a=1' is positive.

Vertex

\mathrm{Rewrite}\:y=\left(x+5\right)^2-3\:\mathrm{in\:the\:form}\:y=ax^2+bx+c

y=x^2+10x+22

a=1,\:b=10,\:c=22

x_v=-\frac{10}{2\cdot \:1}

x_v=-5

Finding y_v

y_v=\left(-5\right)^2+10\left(-5\right)+22

So vertex is:

\left(-5,\:-3\right)

Horizontal Translation

f\left(x\right)=\left(x+5\right)^2 moves the graph LEFT 5 units.

Vertical Translation

f\left(x\right)=\left(x+5\right)^2-3   moves the graph DOWN 3 unit.

Stretch or Compress Vertically

As a = 1, so it does not affect the stretchiness or compression.

Check the attached comparison graphs.

                                 

                                        Q # 6

THE DETAILS OF COMPLETE SOLUTION OF QUESTION 6 IS ATTACHED IN THE DIAGRAM AS THE 5000 CHARACTERS WERE ALREADY FILLED. SO, I solved via the attached figure.

SO, PLEASE CHECK THE LAST FIGURE TO FIND THE COMPLETE SOLUTION OF THE Q#6.

       

You might be interested in
5000 rounded to the nearest 10 thousand
Serga [27]
It only thousand you can't rounded to ten thousand
6 0
3 years ago
Kristen filled his 52 ounce mug full of his favorite soda at the gas station it cost a total of $1.07 how much money is it for e
NikAS [45]

Answer:

$0.02

Step-by-step explanation:

$1.07 / 52 = $0.0205769230769

Simplified is $0.02

4 0
3 years ago
Read 2 more answers
Factorize the following algebraic expression:
Hoochie [10]
X^2+16-38=0
find what 2 numbers multiply to get -38 and add to get 16
find factors of 38
2 times 19
there is no way to use common factor so use quadratic formula which is
x=\frac{ -b+\sqrt{b^2-4ac} }{2a} or x=\frac{ -b-\sqrt{b^2-4ac} }{2a}

ax^2+bx+c=0 subsitte
a=1
b=16
c=-38
subsitute
\frac{ -16+\sqrt{16^2-4(1)(-38)} }{2(1)}=\frac{ -16+\sqrt{256+152} }{2}= \frac{ -16+\sqrt{408} }{2}= \frac{ -16+2\sqrt{102} }{2}=-8+\sqrt{102}
so the answers for x are -8+\sqrt{102} and -8-\sqrt{102}  which are aprox -2.099504938362 and +18.099504938362
so it would be
(x-[-8+√102])(x+[8+√102])=0


6 0
2 years ago
Sara bought 36 ounces of cheese for 3.24 what was the unit price of cheese​
slava [35]

Answer:

$0.09

Step-by-step explanation:

Unit price= total price/ total units

$3.24/ 36oz= $0.09

3 0
3 years ago
Read 2 more answers
Somebody plz help me
nata0808 [166]

Answer:

I am sorry thats a lot to type out.

Step-by-step explanation:

I will say that to know if its rational, you have to see if the integer can be written in a fraction (like 0.333, 89/10, -4, 0)

8 0
2 years ago
Read 2 more answers
Other questions:
  • F(x)=-1/2x^2+4<br>vertex:<br>min or max:<br>axis of symmetry:<br>y-intercept:<br>domain:<br>range:
    7·1 answer
  • Find an expression in terms in n for the nth term of this sequence<br> -3,1,5,9,13
    11·1 answer
  • The graph of this system of equations is used to solve 4x^2-3x+6=2x^4-9x^3+2x
    5·2 answers
  • Solve the linear equation<br><br> <img src="https://tex.z-dn.net/?f=4%5E%7Bx%2B7%7D%20%3D%208%5E%7B2x-3%7D" id="TexFormula1" tit
    14·1 answer
  • The Soto Salad restaurant served 612 cups of Italian salad dressing. If the restaurant serves 14 cup of dressing with each salad
    14·1 answer
  • How do I get the answer? I know it's right on the paper but I don't get pints if I don't show my work.
    8·2 answers
  • Geometry
    9·1 answer
  • Plsss help I will mark brainlist plsss help fast
    14·1 answer
  • What is the solution set?
    7·1 answer
  • Write an equation to represent the relationship shown in the graph.<br> Use the graph below
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!