Answer:
The answer to your question is 0.4 moles of Oxygen
Explanation:
Data
Octane (C₈H₈)
Oxygen (O₂)
Carbon dioxide (CO₂)
Water (H₂O)
moles of water = ?
moles of Oxygen = 1
Balanced chemical reaction
C₈H₈ +10O₂ ⇒ 8CO₂ + 4H₂O
Reactant Element Products
8 C 8
8 H 8
20 O 20
Use proportions to solve this problem
10 moles of Oxygen ----------------- 4 moles of water
1 mol of Oxygen ------------------ x
x = (4 x 1) / 10
x = 4 / 10
x = 0.4 moles of water
Answer:
Kp = 1.41 x 10⁻⁶
Explanation:
We have the chemical equation:
2 A(g) + 3 B(g)⇌ C(g)
In which A and B are the reactants and C is the product. We calculate first the change in the number of moles of gas (Δn or dn):
dn= (sum moles products - sum moles reactants)
= (moles C - (moles A + moles B))
= (1 - (2+3))
= 1 - 5
= -4
We have also the following data:
Kc = 63.2
T= 81∘C + 273 = 354 K
R = 0.082 L.atm/K.mol (it is a constant)
Thus, we introduce the data in the mathematical expression for the relation between Kp and Kc:
= (0.082 L.atm/K.mol x 354 K)⁻⁴ = 1.41 x 10⁻⁶
Answer:
255.51cm3
Explanation:
Data obtained from the question include:
V1 (initial volume) =?
T1 (initial temperature) = 50°C = 50 + 273 = 323K
T2 (final temperature) = - 5°C = - 5 + 237 = 268K
V2 (final volume) = 212cm3
Using the Charles' law equation V1/T1 = V2/T2, the initial volume of the gas can be obtained as follow:
V1/T1 = V2/T2
V1/323 = 212/268
Cross multiply to express in linear form
V1 x 268 = 323 x 212
Divide both side by 268
V1 = (323 x 212)/268
V1 = 255.51cm3
Therefore, the initial volume of the gas is 255.51cm3
Potassium or any other metals.
Answer:
earth I think like that because earth is the second planet