<h3><u>Answer</u>;</h3>
= 0.6
<h3><u>Explanation</u>;</h3>
Using Pythagoras theorrem
Base² + height ² = Hypotenuse²
Thus;
Base² = 15² - 12²
= 81
Base = √81 = 9
But; cosine = adjacent/hypotenuse
Hence; cos θ = 9/15
<u>= 0.6 </u>
Answer:
Soru okunmuyor keşke fotoğrafını çekip atsaydın öyle atarsan sorunu çözerim
İYİ DERSLER
Answer:
Multiple transformations occur because the chemical energy of the fuel is changed to several forms of energy
Explanation:
In a car engine, multiple energy transformation takes place. The chemical energy storef in fuel is transformed into mechanical energy which helps move the wheels of the vehicle.
The mechanical energy can also be transformed into electrical energy through a sort of dynamo system in vehicles. Stereo players use the electrical energy to produce sound.
We see that multiple energy conversions are common in a motor car.
Answer:
26.8 seconds
Explanation:
To solve this problem we have to use 2 kinematics equations: *I can't use subscripts for some reason on here so I am going to use these variables:
v = final velocity
z = initial velocity
x = distance
t = time
a = acceleration


First let's find the final velocity the plane will have at the end of the runway using the first equation:


Now we can plug this into the second equation to find t:


Then using 3 significant figures we round to 26.8 seconds
Answer:
See the explanation below
Explanation:
The pressure is defined as the product of the density of the liquid by the gravitational acceleration by the height, and can be easily calculated by means of the following equation.

where:
Ro = density of the fluid [kg/m³]
g = gravity acceleration = 9.81 [m/s²]
h = elevation [m]
In this way we can understand that the greater pressure is achieved by means of the height of the liquid, that is, as long as the fluid has more height, greater pressure will be achieved at the bottom.
Therefore in order of decreasing will be
The largest pressure with the largest height of the liquid, container B. The next is obtained with container D, the next with container A and the lowest pressure with container C.
The pressure decreases as we go from the container B - D - A - C