Answer:
Forces acting on an object may be balanced or unbalanced. When the forces acting on an object have <u>equal</u> strength and act in opposite directions, they are <u>balanced</u>. These forces cancel out one another, and the <u>motion</u> of the object does not <u>change</u>. When the forces acting on an object are <u>unbalanced</u>, they do not cancel out one another. An unbalanced force acting on an object results in the object’s motion <u>changing</u>. The object may change its <u>speed</u> (speed up or slow
down), or it may change its <u>direction</u>. <u>Friction</u> is a force that resists the motion or the tendency toward motion between two objects in contact with each other. <u>Gravity</u> is a force that pulls objects toward one another. For example, Earth pulls all objects toward it.
Explanation:
<h3><u>Answer;</u></h3>
Cations are much smaller than their corresponding parent
<h3><u>Explanation;</u></h3>
- Parent atom has more electrons and thus the effective nuclear charge on each electron is less.
- When a cation is formed electron(s) is/are lost. Thus the effective nuclear charge or simply put, the attraction of the nucleus towards the electrons increases. Therefore, due to greater pull, the nucleus pulls the shells towards it, there by reducing the size, which makes cations smaller than their corresponding parent.
A) For balanced chemical equation: 2HgO(s) → 2Hg(l) + O₂(g).
1) Mole ratio 1: n(HgO) : n(Hg) = 2 : 2 (1 : 1).
2) Mole ratio 2: n(HgO) : n(O₂) = 2 : 1.
3) Mole ratio 3: n(Hg) : n(O₂) = 2 : 1.
B) Balanced chemical equation: 4NH₃(g) + 6NO(g) → 5N₂(g) + 6H₂O(l).
1) Mole ratio 1: n(NH₃) : n(NO) = 4 : 6 (2 : 3).
2) Mole ratio 2: n(NH₃) : n(N₂) = 4 : 5.
3) Mole ratio 3: n(NH₃) : n(H₂O) = 4 : 6 (2 : 3).
4) Mole ratio 4: n(NO) : n(N₂) = 6 : 5.
5) Mole ratio 5: n(NO) : n(H₂O) = 6 : 6 (1 :1).
6) Mole ratio 6: n(N₂) : n(H₂O) = 5 : 6.
Answer:
Greenhouse gas Chemical formula Global Warming Potential, 100-year time horizon
Carbon Dioxide
Methane
Nitrous Oxide
Chlorofluorocarbon
Explanation:
n=20 mol
(NH)4 SO4
Atomic masses :
N- 14
H- 1
S- 32
O- 16
Therefore M= 14×2 + 1×8 + 32 + 16×4
= 132
m= nM
= 20×132
= 2640g