Answer: Spun yarn is made by twisting staple fibers together
To make a cohesive thread Or “single”. Twisting fibers, into yarn in the process called spinning can be dated back to the upper Paleolithic. Yarn spinning was one of the first processes to be industrialized.
Explanation:
Given the balanced equation:
( Reaction type : double replacement)
CaF2 + H2SO4 → CaSO4 + 2HFI
We can determine the number of grams prepared from the quantity of 75.0 H2SO4, and 63.0g of CaF2 by converting these grams to moles per substance.
This can be done by evaluating the atomic mass of each element of the substance, and totaling it to find the molecular mass.
For H2SO4 or hydrogen sulfate it's molecular mass is the sum of the quantity of atomic mass per element. H×2 + S×1 + O×4 = ≈1.01×2 + ≈32.06×1 + ≈16×4 = 2.02 + 32.06 + 64 = 98.08 u (Dalton's or Da) or g / mol.
For CaF2 or calcium fluoride, it's molecular mass adds 1 atomic mass of calcium and 2 atomic masses of fluoride due to the number of atoms.
Ca×1 + F×2 = ≈40.07×1 + ≈19×2 = 40.08 + 38 = 78.07 u (Da or Dalton's) or g / mol.
Answer:
1116 g.
Explanation:
The balanced equation for the reaction is given below:
4Na + O₂ —> 2Na₂O
From the balanced equation above,
1 mole of O₂ reacted to produce 2 moles of Na₂O.
Next, we shall determine the theoretical yield of Na₂O. This can be obtained as follow:
From the balanced equation above,
1 mole of O₂ reacted to produce 2 moles of Na₂O.
Therefore, 9 moles of O₂ will react to produce = 9 × 2 = 18 moles of Na₂O.
Finally, we shall determine the mass in 18 moles of Na₂O. This can be obtained as follow:
Mole of Na₂O = 18 moles
Molar mass of Na₂O = (23×2) + 16
= 46 + 16
= 62 g/mol
Mass of Na₂O =?
Mass = mole × molar mass
Mass of Na₂O = 18 × 62
Mass of Na₂O = 1116 g
Thus, the theoretical yield of Na₂O is 1116 g.
Answer: Option (3) is the correct answer.
Explanation:
When a more reactive element or atom replaces a less reactive atom then this type of reaction is known as single displacement reaction.
In the given reaction, potassium iodide reacts with fluorine and results in the formation of potassium fluoride and iodine.
Here, fluorine being more reactive displaces iodine from potassium iodide.
Therefore, it is a single replacement or displacement reaction.