The largest value of current that the breaker can carry = Imax=35.4A
Explanation:
Rms value of current= Irms= 25 A
The rms current and the maximum current are related as
Imax= √2 Irms
Imax=√2 (25)
Imax=35.4 A
Thus the maximum current carried by the breaker= 35.4 A
Answer:
a) 39.6 m/s b) 4123 N
Explanation:
a) At the top of the loop, all of the forces point downwards (force of gravity and normal force).
Fnet=ma
ma=m(v^2/R) (centripetal acceleration)
mg=m(v^2/R)
m cancels out (this is why pilot feels weightless) so,
g=(v^2/R)
9.8 m/s^2 = v^2/160 m
v^2=1568 m^2/s^2
v=39.6 m/s
b) At the bottom of the loop, the normal force and the force of gravity point in opposite directions. The normal force is the weight felt.
Convert 300 km/hr to m/s
300 km/hr=83.3 m/s
Convert pilot's weight into mass:
760 N = 77.55 kg
Fnet=ma
n-mg=m(v^2/R)
n=(77.55 kg)(((83.3 m/s)^2)/160 m)+(77.55 kg)(9.8 m/s^2)
n=3363.2 N+760 N=4123 N
Momentum is a vector quantity, and is always conserved. Whenever a collision occurs between two objects, the objects behave under the principle of conservation of momentum. Therefore, if an object moves in the direction opposite to its original direction after a collision, then this indicates that the momentum of the colliding object was greater than the object under consideration.
F=9/5C+32 is the formula for Celsius to Fahrenheit.