When a swimmer pushes threw water to swim they are propelled forward because of the water resistance against the hand and feet.
<span>Part B
What are the values of the intial velocity vector components v0,x and v0,y (both in m/s) as well as the acceleration vector components a0,x and a0,y (both in m/s2)? Here the subscript 0 means "at time t0."
15.0, 26.0, 0, -9.80
</span><span>Part C
What are the values of the velocity vector components v1,x and v1,y (both in m/s) as well as the acceleration vector components a1,x and a1,y (both in m/s2)? Here the subscript 1 means that these are all at time t1.
15, 26, 0, -9.81</span><span>
</span>
More energy, colour and I think less bright
Answer:
1.6 m/s
Explanation:
First you need to find the momentums of each disc by multiplying their velocities with mass.
disc 1: 7*1= 7 kg m/s
disc 2: 1*9= 9 kg m/s
Second, you need to find the total momentum of the system by adding the momentums of each sphere.
9+7= 16 kg m/s
Because momentum is conserved, this is equal to the momentum of the composite body.
Finally, to find the composite body's velocity, divide its total momentum by its mass. This is because mass*velocity=momentum
16/10=1.6
The velocity of the composite body is 1.6 m/s.
From what I know; When a sample of liquid water vaporizes into water vapor, the electrons in the water sped up due to heat.