Answer: die
Explanation: oyxagan all goon bc of all dat suffs
Answer:
a) -41.1 Joule
b) 108.38 Kelvin
Explanation:
Pressure = P = 290 Pa
Initial volume of gas = V₁ = 0.62 m³
Final volume of gas = V₂ = 0.21 m³
Initial temperature of gas = T₁ = 320 K
Heat loss = Q = -160 J
Work done = PΔV
⇒Work done = 290×(0.21-0.62)
⇒Work done = -118.9 J
a) Change in internal energy = Heat - Work
ΔU = -160 -(-118.9)
⇒ΔU = -41.1 J
∴ Change in internal energy is -41.1 J
b) V₁/V₂ = T₁/T₂
⇒T₂ = T₁V₂/V₁
⇒T₂ = 320×0.21/0.62
⇒T₂ = 108.38 K
∴ Final temperature of the gas is 108.38 Kelvin
2) Unbalanced. Mike will push the box with a force of 20 N. The forces would be balanced if the box responded with 30 N.
3) Balanced. Both boys are pulling with the same force. Neither is winning.
4) Unbalanced. The rope will move with 10 N to the west. The teachers are winning.
5) Unbalanced. The kids are pulling 220 N to the east. The kids are winning.
6) Balanced. You and the dog are pulling with the same force.
Answer:
a)
, b) 
Explanation:
a) According to the First Law of Thermodinamics, the system is not reporting any work, mass or heat interactions. Besides, let consider that such box is rigid and, therefore, heat contained inside is the consequence of internal energy.

The internal energy for a monoatomic ideal gas is:

Let assume that cubical box contains just one kilomole of monoatomic gas. Then, the temperature is determined from the Equation of State for Ideal Gases:



The thermal energy contained by the gas is:


b) The physical model for the cat is constructed from Work-Energy Theorem:

The speed of the cat is obtained by isolating the respective variable and the replacement of every known variable by numerical values:



Power = 
Delilah: 170J/30s = 5.66 W
Adam: 260J/20s = 13 W